Chinese Journal of Lasers, Volume. 52, Issue 8, 0802103(2025)

Surface Defect Recognition for Laser Welding of Magnesium Alloys Based on Active Semi-Supervised Learning

Kun Tang1, Zhao Huang1, Yongjian Zhu2、*, Hang Zhang1, Gang Zeng3, Hongchao Xiao4, Xiaojie Zhou1, Weidong Tang1, Mingjun Zhang1, and Cong Mao1
Author Affiliations
  • 1Hunan Provincial Key Laboratory of Intelligent Manufacturing Technology for High-Performance Mechanical Equipment, Changsha University of Science and Technology, Changsha 410114, Hunan , China
  • 2College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, Guangdong , China
  • 3Hunan Provincial Technology Innovation Center of Aerospace New Light Alloy Materials, Changsha 410205, Hunan , China
  • 4Hunan Provincial Engineering Research Center of Wrought Magnesium Alloys and Surface Protection, Changsha 410205, Hunan , China
  • show less
    Figures & Tables(24)
    The framework of active semi-supervised learning
    Schematic of adaptive dynamic threshold adjustment module (ADTAM)
    Schematic of sample screening mechanism (SSM)
    Experimental setup of laser welding. (a) Laser welding system; (b) welding principle
    Image acquisition device. (a) Physical diagram; (b) schematic
    Partial defect samples in the magnesium alloy weld dataset
    Partial defect samples in the NEU-DET dataset
    Network architecture of Faster R-CNN
    Loss function curves. (a) Magnesium alloy weld dataset; (b) NEU-DET dataset
    Effects of hyperparameter setting (magnesium alloy weld dataset). (a) Threshold ε; (b) adjustment coefficient η
    Effects of hyperparameter setting (NEU-DET dataset). (a) Threshold ε; (b) adjustment coefficient η
    Defect visualization (magnesium alloy weld dataset)
    Defect visualization (NEU-DET dataset)
    • Table 1. Chemical composition of AZ31B magnesium alloy

      View table

      Table 1. Chemical composition of AZ31B magnesium alloy

      ElementMass fraction /%
      Mg96.040
      Al2.960
      Zn0.520
      Mn0.310
      Si0.160
      Cu0.006
      Fe0.003
      Ni0.001
    • Table 2. Welding parameters

      View table

      Table 2. Welding parameters

      ParameterContent
      Average laser power of the center beam /W1000
      Modulation frequency of the center beam /Hz200, 400, 600, 800, 1000
      Modulation amplitude of the center beam /W100, 300, 500, 700, 900
      Laser power of ring beam /W1000
      Welding speed /(mm/s)30
      Defocus /mm0
      Upper surface protection gas flow /(L/min)20
      Back protection gas flow /(L/min)15
      Protection gasAr
    • Table 3. Platform parameters and hardware models

      View table

      Table 3. Platform parameters and hardware models

      ParameterContent
      Range of motion

      X-axis: 600 mm, screw

      Y-axis: 600 mm, belt

      Z-axis: 250 mm, screw

      Movement speed /(mm/s)50
      Acquisition time /s35
      Collection accuracy /μm8
      Platform size /(mm×mm×mm)910×775×1800
      Industrial cameraMV-CH250-10GC
      Industrial lensMVL-KL2528M-12MP
      Light sourceMV-LCDS-18-18-W
    • Table 4. Experimental environment and hardware configuration

      View table

      Table 4. Experimental environment and hardware configuration

      NameContent
      GPUNVIDIA Geforce RTX3090
      CPUAMD R9 5950X
      Operating systemUbuntu 20.04
      Video memory /GB24
      CompilerPyCharm
      Deep learning frameworkPyTorch1.13.1
      CUDA version11.1
    • Table 5. Model parameter settings

      View table

      Table 5. Model parameter settings

      ParameterMagnesium alloy weldNEU-DET
      Activation functionReLUReLU
      Learning rate0.010.01
      EMA decay rate0.99960.9996
      Unsupervised loss weight22
      Iterations3000020000
      Learning rate adjustmentFixedFixed
      Warm-up steps20002000
      Batch size8 (4 labeled and 4 unlabeled images)16 (8 labeled and 8 unlabeled images)
      Loss functionCross-entropy lossCross-entropy loss
    • Table 6. Overall recognition accuracy (magnesium alloy weld dataset)

      View table

      Table 6. Overall recognition accuracy (magnesium alloy weld dataset)

      MethodAP50 /%mAP50:95 /%
      Labeling ratio of 2%Labeling ratio of 5%Labeling ratio of 10%Labeling ratio of 20%Labeling ratio of 2%Labeling ratio of 5%Labeling ratio of 10%Labeling ratio of 20%
      Faster R-CNN50.2760.2868.7175.1319.0724.6828.9232.95
      STAC51.6162.5369.9375.5819.9425.8929.7733.56
      Unbiased Teacher55.2865.1771.0678.3123.4528.3333.8637.01
      Soft Teacher52.4963.8670.5276.3920.5626.6430.4134.72
      Active Teacher57.3967.8973.8180.7424.4129.2734.5937.78
      Ours62.4373.7980.6586.3225.5230.8436.6839.34
    • Table 7. Overall recognition accuracy (NEU-DET dataset)

      View table

      Table 7. Overall recognition accuracy (NEU-DET dataset)

      MethodAP50 /%mAP50:95 /%
      Labeling ratio of 2%Labeling ratio of 5%Labeling ratio of 10%Labeling ratio of 20%Labeling ratio of 2%Labeling ratio of 5%Labeling ratio of 10%Labeling ratio of 20%
      Faster R-CNN47.8554.2263.4668.0418.7123.3128.4532.05
      STAC49.3556.5163.7969.0819.6224.4729.5732.93
      Unbiased Teacher53.7460.1566.8571.6722.9327.7733.0536.29
      Soft Teacher51.4958.9664.5569.5221.5625.4130.4433.76
      Active Teacher56.6962.4968.3473.3623.8528.5333.9237.07
      Ours60.4866.7673.5478.1124.5729.4435.2137.93
    • Table 8. Single-class recognition accuracy (magnesium alloy weld dataset)

      View table

      Table 8. Single-class recognition accuracy (magnesium alloy weld dataset)

      Defect classmAP50:95 /%
      Faster R-CNNUnbiased TeacherActive TeacherOurs
      Undercut23.3825.1625.7427.53
      Spatter35.0637.5838.2739.81
      Weld bead34.5639.4540.4141.86
      Collapse42.6347.6748.2549.94
      Others29.1235.1936.2337.56
    • Table 9. Single-class recognition accuracy (NEU-DET dataset)

      View table

      Table 9. Single-class recognition accuracy (NEU-DET dataset)

      Defect classmAP50:95 /%
      Faster R-CNNUnbiased TeacherActive TeacherOurs
      Crazing7.018.368.869.83
      Inclusion32.8539.2540.1840.85
      Patches47.6257.5358.4959.23
      Pitted-surface33.7938.5739.0540.19
      Rolled-in-scale22.6821.5722.7123.16
      Scratches48.3252.4853.1254.31
    • Table 10. Ablation test results of key components (magnesium alloy weld dataset)

      View table

      Table 10. Ablation test results of key components (magnesium alloy weld dataset)

      MethodADTAMSSMSampling strategy uncertaintyAP50 /%mAP50:95 /%
      Baseline×××78.3137.01
      Ours××81.3237.79
      ×84.2439.03
      ×82.2838.25
      86.3239.34
    • Table 11. Ablation test results of key components (NEU-DET dataset)

      View table

      Table 11. Ablation test results of key components (NEU-DET dataset)

      MethodADTAMSSMSampling strategy uncertaintyAP50 /%mAP50:95 /%
      Baseline×××71.6736.29
      Ours××72.9236.57
      ×76.3837.48
      ×74.6337.04
      78.1137.93
    Tools

    Get Citation

    Copy Citation Text

    Kun Tang, Zhao Huang, Yongjian Zhu, Hang Zhang, Gang Zeng, Hongchao Xiao, Xiaojie Zhou, Weidong Tang, Mingjun Zhang, Cong Mao. Surface Defect Recognition for Laser Welding of Magnesium Alloys Based on Active Semi-Supervised Learning[J]. Chinese Journal of Lasers, 2025, 52(8): 0802103

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Forming Manufacturing

    Received: Nov. 12, 2024

    Accepted: Dec. 27, 2024

    Published Online: Mar. 19, 2025

    The Author Email: Yongjian Zhu (zhuyongjian@sztu.edu.cn)

    DOI:10.3788/CJL241344

    CSTR:32183.14.CJL241344

    Topics