NUCLEAR TECHNIQUES, Volume. 48, Issue 6, 060302(2025)

Machine learning-based prediction of cation distribution coefficients in bentonite

Xin YANG1,2, Kunming ZHANG1,2, and Tao CHEN1,2、*
Author Affiliations
  • 1School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China
  • 2Beijing Key Laboratory of Passive Nuclear Energy Safety Technology, North China Electric Power University, Beijing 102206, China
  • show less
    Figures & Tables(9)
    Results of the PCC analysis
    Illustrations of performance of the six ML models in predicting Kd
    Distributions of normalized RMSE and MAE values by Monte Carlo cross-validation (a) RMSE, (b) MAE (color online: the central white dot denotes the median, the thick black bar indicates the interquartile range, and the black line represents the 95% confidence interval)
    Generalization performance of the RF model on test set
    Probability density distribution of Kd (a) Experimental Kd , (b) MC predicted Kd , (c) LHS predicted Kd
    Illustration of relative importance of input factors in RF model (a) and SHAP analysis (b) (color online)
    Influence of individual factors on Kd (a) pH, (b) Initial concentration (Cinit), (c) Ionic strength, (d) Temperature
    • Table 1. Statistical description of all factors

      View table
      View in Article

      Table 1. Statistical description of all factors

      影响因素

      Factors

      平均值Mean

      标准差

      Standard deviation

      中值

      Median

      最大值

      Maximum value

      最小值

      Minimum value

      概率密度分布

      Probability

      distribution

      氧化数Redox2.061对数正态 Lognormal
      SSA / m2∙g-1106.60211.6935.0747.024.0对数正态 Lognormal
      CEC / meq∙(100 g)-185.8811.6987.5120.045.4正态 Normal
      温度Temperature / ℃34.0429.1124.0150.05.0对数正态 Lognormal
      离子强度Ionic strength / mol∙L-10.150.240.0251.00.001对数正态 Lognormal
      pH6.302.086.2812.022.11正态 Normal
      反应时间Contact time / d3.163.432.030.00.011 6指数分布 Exponential
      logLS / mL∙g-12.920.403.04.01.30对数正态 Lognormal
      logCinit / mol∙L-1-5.361.35-5.77-2.97-9.11正态 Normal
      logKd / m3∙kg-10.431.260.383.82-2.43正态 Normal
    • Table 2. Model performance of four valence state nuclides

      View table
      View in Article

      Table 2. Model performance of four valence state nuclides

      价态Valence样本量Sample sizeRMSEMAER2
      +1610.2810.2330.572
      +24720.3990.2860.855
      +32730.2610.2080.968
      +62350.5090.3590.683
    Tools

    Get Citation

    Copy Citation Text

    Xin YANG, Kunming ZHANG, Tao CHEN. Machine learning-based prediction of cation distribution coefficients in bentonite[J]. NUCLEAR TECHNIQUES, 2025, 48(6): 060302

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: NUCLEAR CHEMISTRY, RADIOCHEMISTRY, RADIOPHARMACEUTICALS AND NUCLEAR MEDICINE

    Received: Oct. 29, 2024

    Accepted: --

    Published Online: Jul. 25, 2025

    The Author Email: Tao CHEN (陈涛)

    DOI:10.11889/j.0253-3219.2025.hjs.48.240431

    Topics