Acta Laser Biology Sinica, Volume. 31, Issue 4, 311(2022)
A Study on the Enhancement of Growth, Metabolism and Carbon Sequestration in Chlorella sp. by Chemical Absorbent Monoethanolamine
[1] [1] DE SILVA G P D, RANJITH P G, PERERA M S A. Geochemical aspects of CO2 sequestration in deep saline aquifers: a review[J]. Fuel, 2015, 155(1): 128-143.
[2] [2] THOMAS D M, MECHERY J, PAULOSE S V. Carbon dioxide capture strategies from flue gas using microalgae: a review[J]. Environmental Science and Pollution Research, 2016, 23(17): 16926-16940.
[4] [4] CUEVAS-CASTILLO G A, NAVARRO-PINEDA F S, RODRIGUEZ S A B, et al. Advances on the processing of microalgal biomass for energy-driven biorefineries[J]. Renewable and Sustainable Energy Reviews, 2020, 125: 109606.
[5] [5] LEE Y K, TAY H S. High CO2 partial pressure depresses productivity and bioenergetic growth yield of Chlorella pyrenoidosa culture[J]. Journal of Applied Phycology, 1991, 3(2): 95-101.
[6] [6] NAYAK M, SUH W I, LEE B, et al. Enhanced carbon utilization efficiency and FAME production of Chlorella sp. HS2 through combined supplementation of bicarbonate and carbon dioxide[J]. Energy Conversion and Management, 2018, 156: 45-52.
[8] [8] ROSA G M D, MORAIS M G D, COSTA J A V. Green alga cultivation with monoethanolamine: evaluation of CO2 fixation and macromolecule production[J]. Bioresource Technology, 2018, 261: 206-212.
[10] [10] AHMED R A, HE M, AFTAB R A, et al. Bioenergy application of Dunaliella salina SA 134 grown at various salinity levels for lipid production[J]. Scientific Reports, 2017, 7(1): 8118-8128.
[11] [11] JIANG Y L, ZHANG W, WANG J F, et al. Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus[J]. Bioresource Technology, 2013, 128: 359-364.
[12] [12] MANGA N M, FLAMHOLZ A, HOOD R D, et al. pH determines the energetic efficiency of the cyanobacterial CO2 concentrating mechanism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113: 5354-5362.
[13] [13] MORAES L, ROSA G M D, CARDIAS B B, et al. Microalgal biotechnology for greenhouse gas control: carbon dioxide fixation by Spirulina sp. at different diffusers[J]. Ecological Engineering, 2016, 91: 426-431.
[14] [14] GROBBELAAR J U. Inorganic algal nutrition[M]. America: Handbook of Microalgal Culture, 2013: 123-133.
[15] [15] AZOV Y, GOLDMAN J C. Free ammonia inhibition of algal photosynthesis in intensive cultures[J]. Applied and Environmental Microbiology, 1982, 43(4): 735-739.
[16] [16] NGUYEN B T, RITTMANN B E. Predicting dissolved inorganic carbon in photoautotrophic microalgae culture via the nitrogen source[J]. Environmental Science & Technology, 2015, 49(16): 9826-9831.
[17] [17] ZHANG Z E, LI Y F, ZHANG W X, et al. Effectiveness of amino acid salt solutions in capturing CO2: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 98: 179-188.
[19] [19] CARDIAS B B, MORAIS M G D, COSTA J A V. CO2 conversion by the integration of biological and chemical methods: Spirulina sp. LEB 18 cultivation with diethanolamine and potassium carbonate addition[J]. Bioresource Technology, 2018, 267: 77-83.
[21] [21] KIM G, CHOI W, LEE C H, et al. Enhancement of dissolved inorganic carbon and carbon fixation by green alga Scenedesmus sp. in the presence of alkanolamine CO2 absorbents[J]. Biochemical Engineering Journal, 2013, 78: 18-23.
[22] [22] CHOI W, KIM G, LEE K. Influence of the CO2 absorbent monoethanolamine on growth and carbon fixation by the green alga Scenedesmus sp.[J]. Bioresource Technology, 2012, 120: 295-299.
[23] [23] JEREZ C G, MALAPASCUA J R, SERGEJIEVOVA M, et al. Effect of nutrient starvation under high irradiance on lipid and starch accumulation in Chlorella fusca (Chlorophyta)[J]. Marine Biotechnology, 2015, 18(1): 24-36.
[26] [26] ZHU Y X, CHENG J, XU X D, et al. Using polyethylene glycol to promote Nannochloropsis oceanica growth with 15 vol% CO2[J]. Science of the Total Environment, 2020, 720: 137598.
[27] [27] KASSIM M A, MENG T K. Carbon dioxide (CO2) biofixation by microalgae and its potential for biorefinery and biofuel production[J]. Science of the Total Environment, 2017, 584-585: 1121-1129.
[28] [28] WANG X W, LIANG J R, LUO C S, et al. Biomass, total lipid production, and fatty acid composition of the marine diatom Chaetoceros muelleri in response to different CO2 levels[J]. Bioresource Technology, 2014, 161: 124-130.
[29] [29] SWARNALATHA G V, HEGDE N S, CHAUHAN V S, et al. The effect of carbon dioxide rich environment on carbonic anhydrase activity, growth and metabolite production in indigenous freshwater microalgae[J]. Algal Research, 2015(9), 151-159.
Get Citation
Copy Citation Text
ZHANG Xiaoming, LIU Yingying, CUI Hongli, ZHANG Chunhui, XUE Jinai, JI Chunli, LI Runzhi. A Study on the Enhancement of Growth, Metabolism and Carbon Sequestration in Chlorella sp. by Chemical Absorbent Monoethanolamine[J]. Acta Laser Biology Sinica, 2022, 31(4): 311
Category:
Received: Mar. 30, 2022
Accepted: --
Published Online: Sep. 26, 2022
The Author Email: Jinai XUE (306214803@qq.com)