International Journal of Extreme Manufacturing, Volume. 7, Issue 4, 45501(2025)

Acoustofluidic pick-and-place operation for label-free spatial assembly of cellular spheroid

Yin Qiu, Chen Keke, Zhou Chenyang, Su Yimeng, Yu Xianglin, Feng Shiwei, Wang Xiaolin, Ma Zhichao, and Zhang Wenming
References(59)

[1] [1] Lin R Z and Chang H Y. 2008. Recent advances in three-dimensional multicellular spheroid culture for biomedical research.Biotechnol. J.3, 1172–1184.

[2] [2] Lu C X, Gao C, Qiao H, Zhang Y, Liu H Z, Jin A X and Liu Y Y. 2024. Spheroid construction strategies and application in 3D bioprinting.Bio-Des. Manuf.7, 800–818.

[3] [3] Laschke M W and Menger M D. 2017. Life is 3D: boosting spheroid function for tissue engineering.Trends Biotechnol.35, 133–144.

[4] [4] Fennema E, Rivron N, Rouwkema J, van Blitterswijk C and de Boer J. 2013. Spheroid culture as a tool for creating 3D complex tissues.Trends Biotechnol.31, 108–115.

[5] [5] Blatchley M R and Anseth K S. 2023. Middle-out methods for spatiotemporal tissue engineering of organoids.Nat. Rev. Bioeng.1, 329–345.

[6] [6] Zhang Y S, Dolatshahi-Pirouz A and Orive G. 2024. Regenerative cell therapy with 3D bioprinting.Science385, 604–606.

[7] [7] Qazi T H, Blatchley M R, Davidson M D, Yavitt F M, Cooke M E, Anseth K S and Burdick J A. 2022. Programming hydrogels to probe spatiotemporal cell biology.Cell Stem Cell29, 678–691.

[8] [8] Zhu T, Hu Y, Cui H T and Cui H J. 2024. 3D multispheroid assembly strategies towards tissue engineering and disease modeling.Adv. Healthcare Mater.13, 2400957.

[9] [9] Armstrong J P K et al. 2018. Engineering anisotropic muscle tissue using acoustic cell patterning.Adv. Mater.30, 1802649.

[10] [10] Li Y H, Huang G Y, Zhang X H, Wang L, Du Y N, Lu T J and Xu F. 2014. Engineering cell alignmentin vitro.Biotechnol. Adv.32, 347–365.

[11] [11] Choi J S, Lee S J, Christ G J, Atala A and Yoo J J. 2008. The influence of electrospun aligned poly (-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes.Biomaterials29, 2899–2906.

[12] [12] Rinoldi C et al. 2019. Tendon tissue engineering: effects of mechanical and biochemical stimulation on stem cell alignment on cell-laden hydrogel yarns.Adv. Healthcare Mater.8, 1801218.

[13] [13] Bozkurt A et al. 2009.In vitrocell alignment obtained with a Schwann cell enriched microstructured nerve guide with longitudinal guidance channels.Biomaterials30, 169–179.

[14] [14] Hoehme S et al. 2010. Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration.Proc. Natl Acad. Sci. USA107, 10371–10376.

[15] [15] Zhao L, Xiu J D, Liu Y, Zhang T Y, Pan W J, Zheng X N and Zhang X J. 2019. A 3D printed hanging drop dripper for tumor spheroids analysis without recovery.Sci. Rep.9, 19717.

[16] [16] Barbosa M A G, Xavier C P R, Pereira R F, Petrikait V and Vasconcelos M H. 2021. 3D cell culture models as recapitulators of the tumor microenvironment for the screening of anti-cancer drugs.Cancers14, 190.

[17] [17] Katt M E, Placone A L, Wong A D, Xu Z S and Searson P C. 2016.In vitrotumor models: advantages, disadvantages, variables, and selecting the right platform.Front. Bioeng. Biotechnol.4, 12.

[18] [18] Zhou Z Z, He J Y, Pang Y and Sun W. 2023. Reconstruction of tumor microenvironment viain vitrothree-dimensional models.Biofabrication15, 032002.

[19] [19] Weiswald L B, Bellet D and Dangles-Marie V. 2015. Spherical cancer models in tumor biology.Neoplasia17, 1–15.

[20] [20] Zhang Z R, Wang X, Liu J, Dai C S and Sun Y. 2019. Robotic micromanipulation: fundamentals and applications.Annu. Rev. Control Robot. Auton. Syst.2, 181–203.

[21] [21] Wang Q Q, Zhang J C, Yu J F, Lang J, Lyu Z, Chen Y F and Zhang L. 2023. Untethered small-scale machines for microrobotic manipulation: from individual and multiple to collective machines.ACS Nano17, 13081–13109.

[22] [22] Soto F, Karshalev E, Zhang F Y, Esteban Fernandez de Avila B, Nourhani A and Wang J. 2022. Smart materials for microrobots.Chem. Rev.122, 5365–5403.

[23] [23] Wang Q Q, Chan K F, Schweizer K, Du X Z, Jin D D, Yu S C H, Nelson B J and Zhang L. 2021. Ultrasound Doppler-guided real-time navigation of a magnetic microswarm for active endovascular delivery.Sci. Adv.7, eabe5914.

[24] [24] Wang Q Q, Du X Z, Jin D D and Zhang L. 2022. Real-time ultrasound doppler tracking and autonomous navigation of a miniature helical robot for accelerating thrombolysis in dynamic blood flow.ACS Nano16, 604–616.

[25] [25] Ashkin A, Dziedzic J M, Bjorkholm J E and Chu S. 1986. Observation of a single-beam gradient force optical trap for dielectric particles.Opt. Lett.11, 288–290.

[26] [26] Voldman J. 2006. Electrical forces for microscale cell manipulation.Annu. Rev. Biomed. Eng.8, 425–454.

[27] [27] Chen X Z, Hoop M, Mushtaq F, Siringil E, Hu C Z, Nelson B J and Pan S. 2017. Recent developments in magnetically driven micro- and nanorobots.Appl. Mater. Today9, 37–48.

[28] [28] Zhou H J, Mayorga-Martinez C C, Pan S, Zhang L and Pumera M. 2021. Magnetically driven micro and nanorobots.Chem. Rev.121, 4999–5041.

[29] [29] Wang Q Q, Xiang N, Lang J, Wang B, Jin D D and Zhang L. 2024. Reconfigurable liquid-bodied miniature machines: magnetic control and microrobotic applications.Adv. Intell. Syst.6, 2300108.

[30] [30] Wang Q L et al. 2024. Tracking and navigation of a microswarm under laser speckle contrast imaging for targeted delivery.Sci. Robot.9, eadh1978.

[31] [31] Rufo J, Cai F Y, Friend J, Wiklund M and Huang T J. 2022. Acoustofluidics for biomedical applications.Nat. Rev. Methods Primers2, 30.

[32] [32] Kang B, Shin J, Park H J, Rhyou C, Kang D, Lee S J, Yoon Y S, Cho S W and Lee H. 2018. High-resolution acoustophoretic 3D cell patterning to construct functional collateral cylindroids for ischemia therapy.Nat. Commun.9, 5402.

[33] [33] Yin Q et al. 2024. Acoustic cell patterning for structured cellladen hydrogel fibers/tubules.Adv. Sci.11, 2308396.

[34] [34] Ho C T et al. 2013. Liver-cell patterning Lab Chip: mimicking the morphology of liver lobule tissue.Lab Chip13, 3578–3587.

[35] [35] Ma Z C, Holle A W, Melde K, Qiu T, Poeppel K, Kadiri V M and Fischer P. 2020. Acoustic holographic cell patterning in a biocompatible hydrogel.Adv. Mater.32, 1904181.

[36] [36] Chen Y Y, Chen D X, Liang S Z, Dai Y G, Bai X, Song B, Zhang D Y, Chen H W and Feng L. 2022. Recent advances in field-controlled micro–nano manipulations and micro–nano robots.Adv. Intell. Syst.4, 2100116.

[37] [37] Wang B, Kostarelos K, Nelson B J and Zhang L. 2021. Trends in micro-/nanorobotics: materials development, actuation, localization, and system integration for biomedical applications.Adv. Mater.33, 2002047.

[38] [38] Wang Z N, Latt W T, Tan S Y M and Ang W T. 2015. Visual servoed three-dimensional cell rotation system.IEEE Trans. Biomed. Eng.62, 2498–2507.

[39] [39] Zhuang S L, Dai C S, Shan G Q, Ru C H, Zhang Z R and Sun Y. 2022. Robotic rotational positioning of end-effectors for micromanipulation.IEEE Trans. Robot.38, 2251–2261.

[40] [40] Yang B J and Hu J H. 2014. Linear concentration of microscale samples under an ultrasonically vibrating needle in water on a substrate surface.Sens. ActuatorsB193, 472–477.

[41] [41] Zhang Y, Chen B K, Liu X Y and Sun Y. 2010. Autonomous robotic pick-and-place of microobjects.IEEE Trans. Robot.26, 200–207.

[42] [42] Chen B K, Zhang Y and Sun Y. 2009. Active release of microobjects using a MEMS microgripper to overcome adhesion forces.J. Microelectromech. Syst.18, 652–659.

[43] [43] Ayan B, Heo D N, Zhang Z F, Dey M, Povilianskas A, Drapaca C and Ozbolat I T. 2020. Aspiration-assisted bioprinting for precise positioning of biologics.Sci. Adv.6, eaaw5111.

[44] [44] Daly A C, Davidson M D and Burdick J A. 2021. 3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels.Nat. Commun.12, 753.

[45] [45] Zhou Y D, Liu J X, Yan J J, Guo S J and Li T J. 2021. Soft-contact acoustic microgripper based on a controllable gas-liquid interface for biomicromanipulations.Small17, 2104579.

[46] [46] Roth J G, Brunel L G, Huang M S, Liu Y M, Cai B, Sinha S, Yang F, Pas, ca S P, Shin S and Heilshorn S C. 2023. Spatially controlled construction of assembloids using bioprinting.Nat. Commun.14, 4346.

[47] [47] Cao Q L, Fan Q, Chen Q, Liu C T, Han X T and Li L. 2020. Recent advances in manipulation of micro- and nano-objects with magnetic fields at small scales.Mater. Horiz.7, 638–666.

[48] [48] Pan Y, Du X W, Zhao F and Xu B. 2012. Magnetic nanoparticles for the manipulation of proteins and cells.Chem. Soc. Rev.41, 2912–2942.

[49] [49] Yin Q, Song H Y, Wang Z L, Ma Z C and Zhang W M. 2024. Acoustic black hole effect enhanced micro-manipulator.Microsyst. Nanoeng.10, 144.

[50] [50] Settnes M and Bruus H. 2012. Forces acting on a small particle in an acoustical field in a viscous fluid.Phys. Rev.E85, 016327.

[51] [51] Doinikov A A. 2006. Acoustic radiation pressure on a compressible sphere in a viscous fluid.J. Fluid Mech.267, 1–22.

[52] [52] Wang K, Cai L, Zhang L, Dong J Y and Wang S F. 2012. Biodegradable photo-crosslinked polymer substrates with concentric microgrooves for regulating MC3T3-E1 cell behavior.Adv. Healthcare Mater.1, 292–301.

[53] [53] Wu X H and Wang S F. 2012. Biomimetic calcium carbonate concentric microgrooves with tunable widths for promoting MC3T3-E1 cell functions.Adv. Healthcare Mater.2, 326–333.

[54] [54] Belli C, Trapani D, Viale G, D’Amico P, Duso B A, Della Vigna P, Orsi F and Curigliano G. 2018. Targeting the microenvironment in solid tumors.Cancer Treat Rev.65, 22–32.

[55] [55] Bahcecioglu G, Basara G, Ellis B W, Ren X and Zorlutuna P. 2020. Breast cancer models: engineering the tumor microenvironment.Acta Biomater.106, 1–21.

[56] [56] Flores-Torres S et al. 2023. Constructing 3Din vitromodels of heterocellular solid tumors and stromal tissues using extrusion-based bioprinting.ACS Biomater. Sci. Eng.9, 542–561.

[57] [57] Rodrigues T, Kundu B, Silva-Correia J, Kundu S C, Oliveira J M, Reis R L and Correlo V M. 2018. Emerging tumor spheroids technologies for 3Din vitrocancer modeling.Pharmacol. Ther.184, 201–211.

[58] [58] Shen K Y et al. 2014. Resolving cancer–stroma interfacial signalling and interventions with micropatterned tumour–stromal assays.Nat. Commun.5, 5662.

[59] [59] Orimo A, Gupta P B, Sgroi D C, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey V J, Richardson A L and Weinberg R A. 2005. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion.Cell121, 335–348.

Tools

Get Citation

Copy Citation Text

Yin Qiu, Chen Keke, Zhou Chenyang, Su Yimeng, Yu Xianglin, Feng Shiwei, Wang Xiaolin, Ma Zhichao, Zhang Wenming. Acoustofluidic pick-and-place operation for label-free spatial assembly of cellular spheroid[J]. International Journal of Extreme Manufacturing, 2025, 7(4): 45501

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category:

Received: Oct. 17, 2024

Accepted: Sep. 9, 2025

Published Online: Sep. 9, 2025

The Author Email:

DOI:10.1088/2631-7990/adbb34

Topics