Opto-Electronic Engineering, Volume. 50, Issue 10, 230090-1(2023)

Far-field computational optical imaging techniques based on synthetic aperture: a review

Sheng Li1,2,3, Bowen Wang1,2,3, Haitao Guan1,2,3, Kunyao Liang1,2,3, Yan Hu1,2,3, Yan Zou4, Xu Zhang1,2,3, Qian Chen1,2,3、*, and Chao Zuo1,2,3、**
Author Affiliations
  • 1Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
  • 2Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu 210019, China
  • 3Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu 210094, China
  • 4Military Representative Office of Army Equipment Department in Nanjing, Nanjing, Jiangsu 210024, China
  • show less
    References(90)

    [1] Zuo C, Chen Q. Resolution, super-resolution and spatial bandwidth product expansion——some thoughts from the perspective of computational optical imaging[J]. Chin Opt, 15, 1105-1166(2022).

    [2] Zuo C, Chen Q. Computational optical imaging: an overview[J]. Infrared Laser Eng, 51, 20220110(2022).

    [3] Zhang R N, Cai Z W, Sun J S et al. Optical-field coherence measurement and its applications in computational imaging[J]. Laser Optoelectron Prog, 58, 1811003(2021).

    [4] Wang B W, Zou Y, Zhang L F et al. Multimodal super-resolution reconstruction of infrared and visible images via deep learning[J]. Opt Lasers Eng, 156, 107078(2022).

    [5] Fan Y, Sun J S, Shu Y F et al. Efficient synthetic aperture for phaseless Fourier ptychographic microscopy with hybrid coherent and incoherent illumination[J]. Laser Photon Rev, 17, 2200201(2023).

    [6] Hellerer T, Enejder A M K, Zumbusch A. Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses[J]. Appl Phys Lett, 85, 25-27(2004).

    [7] Li Z P, Ye J T, Huang X et al. Single-photon imaging over 200 km[J]. Optica, 8, 344-349(2021).

    [8] Wang B W, Zou Y, Zhang L F et al. Low-light-level image super-resolution reconstruction based on a multi-scale features extraction network[J]. Photonics, 8, 321(2021).

    [9] Holloway J. Synthetic apertures for visible imaging using Fourier ptychography[D](2016).

    [10] Kirmani A, Venkatraman D, Shin D et al. First-photon imaging[J]. Science, 343, 58-61(2014).

    [11] Ryle M, Vonberg D D. Solar radiation on 175 Mc. /s[J]. Nature, 158, 339-340(1946).

    [12] Napier P J, Thompson A R, Ekers R D. The very large array: design and performance of a modern synthesis radio telescope[J]. Proc IEEE, 71, 1295-1320(1983).

    [13] Ouchi K. Recent trend and advance of synthetic aperture radar with selected topics[J]. Remote Sens, 5, 716-807(2013).

    [14] Moreira A, Prats-Iraola P, Younis M et al. A tutorial on synthetic aperture radar[J]. IEEE Geosci Remote Sens Mag, 1, 6-43(2013).

    [15] Lukosz W. Optical systems with resolving powers exceeding the classical limit[J]. J Opt Soc Am, 56, 1463-1471(1966).

    [16] Zhang M Z, Wang H R, Zuo Y X et al. Review of the technical development of the structures of radio telescopes[J]. J Huazhong Univ Sci Technol (Nat Sci Ed), 51, 48-58(2023).

    [17] Ryle M, Hewish A. The synthesis of large radio telescopes[J]. Mon Not Roy Astron Soc, 120, 220-230(1960).

    [18] Gabor D. Microscopy by reconstructed wave-fronts[J]. Proc Roy Soc A Math Phys Eng Sci, 197, 454-487(1949).

    [19] Gabor D, Goss W P. Interference microscope with total wavefront reconstruction[J]. J Opt Soc Am, 56, 849-858(1966).

    [20] Aleksoff C C, Accetta J S, Peterson L M et al. Synthetic aperture imaging with a pulsed Co2 tea laser[J]. Proc SPIE, 0783, 29-41(1987).

    [21] Tippie A E, Kumar A, Fienup J R. High-resolution synthetic-aperture digital holography with digital phase and pupil correction[J]. Opt Express, 19, 12027-12038(2011).

    [22] Kahraman S, Bacher R. A comprehensive review of hyperspectral data fusion with lidar and sar data[J]. Annu Rev Control, 51, 236-253(2021).

    [23] Mo D, Wang R, Wang N et al. Three-dimensional inverse synthetic aperture lidar imaging for long-range spinning targets[J]. Opt Lett, 43, 839-842(2018).

    [24] Bashkansky M, Lucke R L, Funk E et al. Two-dimensional synthetic aperture imaging in the optical domain[J]. Opt Lett, 27, 1983-1985(2002).

    [25] Beck S M, Buck J R, Buell W F et al. Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing[J]. Appl Opt, 44, 7621-7629(2005).

    [26] Li J J, Zhou N, Sun J S et al. Transport of intensity diffraction tomography with non-interferometric synthetic aperture for three-dimensional label-free microscopy[J]. Light Sci Appl, 11, 154(2022).

    [27] Hilaire P S, Benton S A, Lucente M. Synthetic aperture holography: a novel approach to three-dimensional displays[J]. J Opt Soc Am A, 9, 1969-1977(1992).

    [28] Martínez-León L, Javidi B. Synthetic aperture single-exposure on-axis digital holography[J]. Opt Express, 16, 161-169(2008).

    [29] Mirsky S K, Shaked N T. First experimental realization of six-pack holography and its application to dynamic synthetic aperture superresolution[J]. Opt Express, 27, 26708-26720(2019).

    [30] Zheng G A, Shen C, Jiang S W et al. Concept, implementations and applications of Fourier ptychography[J]. Nat Rev Phys, 3, 207-223(2021).

    [31] Pan A, Zuo C, Yao B L. High-resolution and large field-of-view Fourier ptychographic microscopy and its applications in biomedicine[J]. Rep Prog Phys, 83, 096101(2020).

    [32] Zheng G A, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nat Photonics, 7, 739-745(2013).

    [33] Konda P C, Loetgering L, Zhou K C et al. Fourier ptychography: current applications and future promises[J]. Opt Express, 28, 9603-9630(2020).

    [34] Sun J S. Research on wide-field high-resolution quantitative phase microscopy methods based on Fourier ptychography[D](2019).

    [35] Sun J S, Zhang Y Z, Chen Q et al. Fourier ptychographic microscopy: theory, advances, and applications[J]. Acta Opt Sin, 36, 1011005(2016).

    [36] Dong S Y, Horstmeyer R, Shiradkar R et al. Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging[J]. Opt Express, 22, 13586-13599(2014).

    [37] Holloway J, Asif M S, Sharma M K et al. Toward long-distance subdiffraction imaging using coherent camera arrays[J]. IEEE Trans Comput Imaging, 2, 251-265(2016).

    [38] Sun J S, Chen Q, Zhang Y Z et al. Sampling criteria for Fourier ptychographic microscopy in object space and frequency space[J]. Opt Express, 24, 15765-15781(2016).

    [39] Holloway J, Wu Y C, Sharma M K et al. SAVI: synthetic apertures for long-range, subdiffraction-limited visible imaging using Fourier ptychography[J]. Sci Adv, 3, e1602564(2017).

    [40] Li Z X. Researches on far field high resolution optical imaging technology based on phase information[D](2020).

    [41] Maiden A M, Rodenburg J M. An improved ptychographical phase retrieval algorithm for diffractive imaging[J]. Ultramicroscopy, 109, 1256-1262(2009).

    [42] Sun J S, Chen Q, Zhang Y Z et al. Efficient positional misalignment correction method for Fourier ptychographic microscopy[J]. Biomed Opt Express, 7, 1336-1350(2016).

    [43] Cui B Q, Zhang S H, Wang Y C et al. Pose correction scheme for camera-scanning Fourier ptychography based on camera calibration and homography transform[J]. Opt Express, 30, 20697-20711(2022).

    [44] Zhao M, Zhang X H, Tian Z M et al. Neural network model with positional deviation correction for Fourier ptychography[J]. J Soc Inf Dis, 29, 749-757(2021).

    [45] He C G, Zhu Y Q, Wang B. Position misalignment correction method for macroscopic Fourier ptychography based on particle swarm optimization[J]. Opt Precision Eng, 30, 2975-2986(2022).

    [46] Wang C Y, Hu M H, Takashima Y et al. Snapshot ptychography on array cameras[J]. Opt Express, 30, 2585-2598(2022).

    [47] Wu J C, Yang F, Cao L C. Resolution enhancement of long-range imaging with sparse apertures[J]. Opt Lasers Eng, 155, 107068(2022).

    [48] Wang B W, Li S, Chen Q et al. Learning-based single-shot long-range synthetic aperture Fourier ptychographic imaging with a camera array[J]. Opt Lett, 48, 263-266(2023).

    [49] Ma X H, Wang A T, Ma F H et al. Speckle reduction using phase plate array and lens array[J]. Opto-Electron Adv, 3, 190036(2020).

    [50] Fan Y, Sun J S, Chen Q et al. Adaptive denoising method for Fourier ptychographic microscopy[J]. Opt Commun, 404, 23-31(2017).

    [51] Danielyan A, Katkovnik V, Egiazarian K. BM3D frames and variational image deblurring[J]. IEEE Trans Image Process, 21, 1715-1728(2012).

    [52] Li Z X, Wen D S, Song Z X et al. Sub-diffraction visible imaging using macroscopic Fourier ptychography and regularization by denoising[J]. Sensors, 18, 3154(2018).

    [54] Li B P, Ma C W, Ersoy O K et al. Fourier ptychography reconstruction based on reweighted amplitude flow with regularization by denoising and deep decoder[J]. IEEE Photonics J, 15, 8500110(2023).

    [55] Yang X, Konda P C, Xu S Q et al. Quantized Fourier ptychography with binary images from SPAD cameras[J]. Photonics Res, 9, 1958-1969(2021).

    [56] Li S, Wang B W, Liang K Y et al. Far-field synthetic aperture imaging via fourier ptychography with quasi‐plane wave illumination[J]. Adv Photonics Res, 4, 2300180(2023).

    [57] Meinel A B, Shannon R R, Whipple F L et al. A large multiple mirror telescope (MMT) project[J]. Optical Engineering, 11, 110233(1972).

    [58] Hege E K, Beckers J M, Strittmatter P A et al. Multiple mirror telescope as a phased array telescope[J]. Appl Opt, 24, 2565-2576(1985).

    [59] Gardner J P, Mather J C, Clampin M et al. The james webb space telescope[J]. Space Sci Rev, 123, 485-606(2006).

    [60] Golay M J E. Point arrays having compact, nonredundant autocorrelations[J]. J Opt Soc Am, 61, 272-273(1971).

    [61] Cornwell T J. A novel principle for optimization of the instantaneous Fourier plane coverage of correction arrays[J]. IEEE Trans Antennas Propag, 36, 1165-1167(1988).

    [62] Chung S J, Miller D W, de Weck O L. ARGOS testbed: study of multidisciplinary challenges of future spaceborne interferometric arrays[J]. Opt Eng, 43, 2156-2167(2004).

    [64] Fienup J R, Griffith D K, Harrington L et al. Comparison of reconstruction algorithms for images from sparse-aperture systems[C], 4792, 1-8(2002).

    [65] Zhu X F, Wu F, Tao C K. Research on image restoration for sparse aperture systems[J]. Acta Photonica Sin, 36, 2319-2324(2007).

    [66] Xie Z L, Qi B, Ma H T et al. Optical transfer function reconstruction in incoherent Fourier ptychography[J]. Chin Phys Lett, 33, 044206(2016).

    [67] Tang J, Wu J, Wang K Q et al. RestoreNet-Plus: image restoration via deep learning in optical synthetic aperture imaging system[J]. Opt Lasers Eng, 146, 106707(2021).

    [69] Haguenauer P, Alonso J, Bourget P et al. The very large telescope Interferometer: 2010 edition[J]. Proc SPIE, 7734, 773404(2010).

    [70] Kendrick R L, Duncan A, Ogden C et al. Flat-panel space-based space surveillance sensor[C], 9(2013).

    [72] Gao W P, Wang X R, Ma L et al. Quantitative analysis of segmented planar imaging quality based on hierarchical multistage sampling lens array[J]. Opt Express, 27, 7955-7967(2019).

    [73] Gao W P, Yuan Y, Wang X R et al. Quantitative analysis and optimization design of the segmented planar integrated optical imaging system based on an inhomogeneous multistage sampling lens array[J]. Opt Express, 29, 11869-11884(2021).

    [74] Ding C, Zhang X C, Liu X Y et al. Structure design and image reconstruction of hexagonal-array photonics integrated interference imaging system[J]. IEEE Access, 8, 139396-139403(2020).

    [75] Wang K, Zhu Y Q, An Q C et al. Even sampling photonic-integrated interferometric array for synthetic aperture imaging[J]. Opt Express, 30, 32119-32128(2022).

    [76] Liu G, Wen D S, Song Z X. System design of an optical interferometer based on compressive sensing[J]. Mon Not Roy Astron Soc, 478, 2065-2073(2018).

    [77] Liu G, Wen D S, Song Z X et al. Optimized design of an emerging optical imager using compressive sensing[J]. Optics Laser Technol, 110, 158-164(2019).

    [78] Chen T B, Zeng X F, Zhang Z Y et al. REM: a simplified revised entropy image reconstruction for photonics integrated interference imaging system[J]. Opt Commun, 501, 127341(2021).

    [79] Zhang Z R, Li H Y, Lv G M et al. Deep learning-based image reconstruction for photonic integrated interferometric imaging[J]. Opt Express, 30, 41359-41373(2022).

    [84] Su T H, Scott R P, Ogden C et al. Experimental demonstration of interferometric imaging using photonic integrated circuits[J]. Opt Express, 25, 12653-12665(2017).

    [85] Su T H, Liu G Y, Badham K E et al. Interferometric imaging using Si3N4 photonic integrated circuits for a SPIDER imager[J]. Opt Express, 26, 12801-12812(2018).

    [86] Rosen J, Brooker G. Digital spatially incoherent Fresnel holography[J]. Opt Letters, 32, 912-914(2007).

    [87] Katz B, Rosen J. Super-resolution in incoherent optical imaging using synthetic aperture with Fresnel elements[J]. Opt Express, 18, 962-972(2010).

    [88] Katz B, Rosen J. Could SAFE concept be applied for designing a new synthetic aperture telescope?[J]. Opt Express, 19, 4924-4936(2011).

    [89] Bulbul A, Rosen J. Super-resolution imaging by optical incoherent synthetic aperture with one channel at a time[J]. Photonics Res, 9, 1172-1181(2021).

    Tools

    Get Citation

    Copy Citation Text

    Sheng Li, Bowen Wang, Haitao Guan, Kunyao Liang, Yan Hu, Yan Zou, Xu Zhang, Qian Chen, Chao Zuo. Far-field computational optical imaging techniques based on synthetic aperture: a review[J]. Opto-Electronic Engineering, 2023, 50(10): 230090-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Apr. 20, 2023

    Accepted: Jul. 8, 2023

    Published Online: Jan. 22, 2024

    The Author Email: Qian Chen (陈钱), Chao Zuo (左超)

    DOI:10.12086/oee.2023.230090

    Topics