Acta Optica Sinica, Volume. 43, Issue 8, 0822008(2023)
Mathematical Description and Design Methods of Complex Optical Surfaces
[1] Yang T, Duan Y Z, Cheng D W et al. Freeform imaging optical system design: theories, development, and applications[J]. Acta Optica Sinica, 41, 0108001(2021).
[2] Broemel A, Lippmann U, Gross H. Freeform surface descriptions. Part I: mathematical representations[J]. Advanced Optical Technologies, 6, 327-336(2017).
[3] Broemel A, Liu C, Zhong Y et al. Freeform surface descriptions. Part II: application benchmark[J]. Advanced Optical Technologies, 6, 337-347(2017).
[4] Rodgers J M. Nonstandard representations of aspheric surfaces in optical design[D](1984).
[5] Sasian J M. Annular surfaces in annular field systems[J]. Optical Engineering, 36, 3401-3403(1997).
[6] Lerner S A. Optical design using novel aspheric surfaces[D](2000).
[7] Forbes G W. Shape specification for axially symmetric optical surfaces[J]. Optics Express, 15, 5218-5226(2007).
[8] Forbes G W. Characterizing the shape of freeform optics[J]. Optics Express, 20, 2483-2499(2012).
[10] Cakmakci O, Vo S, Foroosh H et al. Application of radial basis functions to shape description in a dual-element off-axis magnifier[J]. Optics Letters, 33, 1237-1239(2008).
[11] Cakmakci O, Moore B, Foroosh H et al. Optimal local shape description for rotationally non-symmetric optical surface design and analysis[J]. Optics Express, 16, 1583-1589(2008).
[12] Rogers J R. A comparison of anamorphic, keystone, and Zernike surface types for aberration correction[J]. Proceedings of SPIE, 7652, 76520B(2010).
[13] Wang Q F, Cheng D W, Wang Y T. Description of free-form optical curved surface using two-variable orthogonal polynomials[J]. Acta Optica Sinica, 32, 0922002(2012).
[14] Kaya I, Rolland J P. Hybrid RBF and local ϕ‑polynomial freeform surfaces[J]. Advanced Optical Technologies, 2, 81-88(2013).
[15] Zhou W, Cheng D W, Xu C et al. Application of NURBS free-form surface in optomechanical design and analysis[J]. Infrared and Laser Engineering, 43, 3313-3320(2014).
[16] Cheng D W, Chen X J, Xu C et al. Optical description and design method with annularly stitched aspheric surface[J]. Applied Optics, 54, 10154-10162(2015).
[17] Sasian J, Yan Y F. Miniature camera lens design with a freeform surface[J]. Proceedings of SPIE, 10590, 1059012(2017).
[18] Chen H L, Gao Y, Cheng D W et al. Optical description and design method of annularly piecewise surface[J]. Acta Optica Sinica, 38, 0522002(2018).
[19] Xu C. Study on design method and application of freeform unobscured off-axis reflective systems[D](2018).
[20] Schiesser E M, Takaki N, Stone B. Representations of off-axis conics for lens design[J]. Proceedings of SPIE, 12078, 120781F(2021).
[21] Yang T, Zhou L J, Cheng D W et al. Designing reflective imaging systems with multiple-surfaces-integrated elements using a Gaussian function freeform surface[J]. Applied Optics, 61, 5215-5225(2022).
[22] Cheng D W, Chen H L, Shen W R et al. Optical description and design method of smoothly stitched polynomial freeform surfaces[J]. Optics and Lasers in Engineering, 162, 107349(2023).
[23] Zhu J, Wu X F, Yang T et al. Generating optical freeform surfaces considering both coordinates and normals of discrete data points[J]. Journal of the Optical Society of America A, 31, 2401-2408(2014).
[24] Ye J F, Chen L, Li X H et al. Review of optical freeform surface representation technique and its application[J]. Optical Engineering, 56, 110901(2017).
[25] Rolland J P, Davies M A, Suleski T J et al. Freeform optics for imaging[J]. Optica, 8, 161-176(2021).
[26] James B H. Lens of variable focal power having surfaces of involute form[P].
[27] Plummer W T. Free-form optical components in some early commercial products[J]. Proceedings of SPIE, 5865, 586509(2005).
[28] Plummer W T. Unusual optics of the Polaroid SX-70 Land camera[J]. Applied Optics, 21, 196-208(1982).
[29] Bauer A, Pesch M, Muschaweck J et al. All-reflective electronic viewfinder enabled by freeform optics[J]. Optics Express, 27, 30597-30605(2019).
[30] Bauer A, Rolland J P. Design of a freeform electronic viewfinder coupled to aberration fields of freeform optics[J]. Optics Express, 23, 28141-28153(2015).
[31] Zhu J, Hou W, Zhang X D et al. Design of a low F-number freeform off-axis three-mirror system with rectangular field-of-view[J]. Journal of Optics, 17, 015605(2015).
[32] Yang T, Zhu J, Jin A G. Compact freeform off-axis three-mirror imaging system based on the integration of primary and tertiary mirrors on one single surface[J]. Chinese Optics Letters, 14, 60801-60805(2016).
[33] Schiesser E M, Bauer A, Rolland J P. Effect of freeform surfaces on the volume and performance of unobscured three mirror imagers in comparison with off-axis rotationally symmetric polynomials[J]. Optics Express, 27, 21750-21765(2019).
[34] Geyl R, Ruch E, Bourgois R et al. Freeform optics design, fabrication and testing technologies for space applications[J]. Proceedings of SPIE, 11180, 111800P(2019).
[35] Reimers J, Bauer A, Thompson K P et al. Freeform spectrometer enabling increased compactness[J]. Light: Science & Applications, 6, e17026(2017).
[36] Cheng D W, Wang Q W, Liu Y et al. Design and manufacture AR head-mounted displays: a review and outlook[J]. Light: Advanced Manufacturing, 2, 336-355(2021).
[37] Cheng D W, Wang Y T, Hua H et al. Design of an optical see-through head-mounted display with a low F-number and large field of view using a freeform prism[J]. Applied Optics, 48, 2655-2668(2009).
[38] Cheng D W, Wang Y T, Hua H et al. Design of a wide-angle, lightweight head-mounted display using free-form optics tiling[J]. Optics Letters, 36, 2098-2100(2011).
[39] Cheng D W, Wang Y T, Xu C et al. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics[J]. Optics Express, 22, 20705-20719(2014).
[40] Wei L D, Li Y C, Jing J J et al. Design and fabrication of a compact off-axis see-through head-mounted display using a freeform surface[J]. Optics Express, 26, 8550-8565(2018).
[41] Wilson A, Hua H. Design and demonstration of a vari-focal optical see-through head-mounted display using freeform Alvarez lenses[J]. Optics Express, 27, 15627-15637(2019).
[42] Cheng D W, Duan J X, Chen H L et al. Freeform OST-HMD system with large exit pupil diameter and vision correction capability[J]. Photonics Research, 10, 21-32(2022).
[43] Cheng D W, Chen H L, Yao C et al. Design, stray light analysis, and fabrication of a compact head-mounted display using freeform prisms[J]. Optics Express, 30, 36931-36948(2022).
[44] Watanabe T, Kawaai S. Projection type image display apparatus[P].
[45] Nie Y F, Mohedano R, Benítez P et al. Multifield direct design method for ultrashort throw ratio projection optics with two tailored mirrors[J]. Applied Optics, 55, 3794-3800(2016).
[46] Yu B H, Tian Z H, Su D Q et al. Design and engineering verification of an ultrashort throw ratio projection system with a freeform mirror[J]. Applied Optics, 58, 3575-3581(2019).
[47] Mann H J, Ulrich W, Muellender S et al. Imaging optical system and projection exposure installation for microlithography with an imaging optical system of this type[P].
[48] Liu Y, Li Y Q, Cao Z. Design method of off-axis extreme ultraviolet lithographic objective system with a direct tilt process[J]. Optical Engineering, 54, 075102(2015).
[49] Mao S S, Li Y Q, Jiang J H et al. Design of a hyper-numerical-aperture deep ultraviolet lithography objective with freeform surfaces[J]. Chinese Optics Letters, 16, 030801(2018).
[50] Mao S S, Li Y Q, Liu K et al. Optical design of high numerical aperture extreme ultraviolet lithography objective with freeform surfaces[J]. Infrared and Laser Engineering, 48, 0814002(2019).
[51] Wu X F, Zhu J, Yang T et al. Transverse image translation using an optical freeform single lens[J]. Applied Optics, 54, E55-E62(2015).
[52] Ma T, Yu J C, Liang P et al. Design of a freeform varifocal panoramic optical system with specified annular center of field of view[J]. Optics Express, 19, 3843-3853(2011).
[53] Yang T, Jin G F, Zhu J. Automated design of freeform imaging systems[J]. Light: Science & Applications, 6, e17081(2017).
[54] Bauer A, Schiesser E M, Rolland J P. Starting geometry creation and design method for freeform optics[J]. Nature Communications, 9, 1756(2018).
[55] Duerr F, Thienpont H. Freeform imaging systems: Fermat’s principle unlocks “first time right” design[J]. Light: Science & Applications, 10, 95(2021).
[56] Chen L, Gao Z S, Ye J F et al. Construction method through multiple off-axis parabolic surfaces expansion and mixing to design an easy-aligned freeform spectrometer[J]. Optics Express, 27, 25994-26013(2019).
[57] Qin Z C, Wang X D, Ren C M et al. Design method for a reflective optical system with low tilt error sensitivity[J]. Optics Express, 29, 43464-43479(2021).
[58] Chrisp M. Method of and system for optimizing NURBS surfaces for an imaging system[P].
[59] Jester P, Menke C, Urban K. Wavelet methods for the representation, analysis and simulation of optical surfaces[M]. Günther M, Bartel A, Brunk M, et al. Progress in industrial mathematics at ECMI 2010. Mathematics in industry, 17, 357-363(2012).
[60] Sasian J M. Method of confocal mirror design[J]. Optical Engineering, 58, 015101(2019).
[61] Sasian J M. How to approach the design of a bilateral symmetric optical system[J]. Optical Engineering, 33, 2045-2061(1994).
[62] Reshidko D, Sasian J M. Method for the design of nonaxially symmetric optical systems using free-form surfaces[J]. Optical Engineering, 57, 101704(2018).
[63] Cheng D W, Xu C, Yang T et al. Off-axis reflective imaging system design with a conicoid-based freeform surface[J]. Optics Express, 30, 9590-9603(2022).
[64] Wang Y T. Ray-tracing formulae for optical surfaces of unusual shape[J]. Optical Technique, 16, 2-8(1990).
[65] Zernike F. Inflection theory of the cutting method and its improved form, the phase contrast method[J]. Physica, 1, 689-704(1934).
[66] Shannon R R[M]. The art and science of optical design(1997).
[67] Fuerschbach K, Rolland J P, Thompson K P. Theory of aberration fields for general optical systems with freeform surfaces[J]. Optics Express, 22, 26585-26606(2014).
[68] Bray M. Orthogonal polynomials: a set for square areas[J]. Proceedings of SPIE, 5252, 314-321(2004).
[69] Oprea J[M]. Differential geometry and its applications(2007).
[70] Wang K C, Shi S B. An algorithm of Gauss curvature on free-surface[J]. The Journal of Northwest Agricultural University, 28, 150-153(2000).
[71] Pan B Z, Cheng H B, Tam H Y et al. Design strategy for broadband or dual-band ultrathin imaging system[J]. Optik, 124, 3282-3286(2013).
[72] Zhang R R, Shen W M. Ultrathin lenses using annular folded optics[J]. Infrared and Laser Engineering, 41, 1306-1310(2012).
[73] Cheng D W, Gong C, Xu C et al. Design of an ultrawide angle catadioptric lens with an annularly stitched aspherical surface[J]. Optics Express, 24, 2664-2677(2016).
[74] Minefuji N. Projection optical system and projection type image display device[P].
[76] Cheng D W. Study on design methods of free-form imaging systems and their applications[D](2011).
[77] Alvarez L W. Two-element variable-power spherical lens[P].
[78] Blendowske R, Villegas E A, Artal P. An analytical model describing aberrations in the progression corridor of progressive addition lenses[J]. Optometry and Vision Science, 83, 666-671(2006).
[79] Smilie P J, Suleski T J, Dutterer B et al. Design and characterization of an infrared Alvarez lens[J]. Optical Engineering, 51, 013006(2012).
[80] Lou W, Cheng D W, Gu L et al. Optical design and evaluation of Alvarez-type vision-training system[J]. Chinese Optics Letters, 16, 072201(2018).
[81] Takaki N, Papa J C, Bauer A et al. Off-axis conics as base surfaces for freeform optics enable null testability[J]. Optics Express, 28, 10859-10872(2020).
[82] Rigler A K, Vogl T P. Spline functions: an alternative representation of aspheric surfaces[J]. Applied Optics, 10, 1648-1651(1971).
[83] Stacy J E. Asymmetric spline surfaces: characteristics and applications[J]. Applied Optics, 23, 2710-2714(1984).
[84] Gregory G G, Freniere E R, Gardner L R. Using spline surfaces in optical design software[J]. Proceedings of SPIE, 4769, 75-83(2002).
[85] Chase H. Optical design with rotationally symmetric NURBS[C], IMA2(2002).
[86] Jester P, Menke C, Urban K. B-spline representation of optical surfaces and its accuracy in a ray trace algorithm[J]. Applied Optics, 50, 822-828(2011).
[87] Lee S, Wolberg G, Shin S Y. Scattered data interpolation with multilevel B-splines[J]. IEEE Transactions on Visualization and Computer Graphics, 3, 228-244(1997).
[88] Piegl L A, Tiller W[M]. The NURBS book(1997).
Get Citation
Copy Citation Text
Dewen Cheng, Hailong Chen, Yongtian Wang, Tong Yang. Mathematical Description and Design Methods of Complex Optical Surfaces[J]. Acta Optica Sinica, 2023, 43(8): 0822008
Category: Optical Design and Fabrication
Received: Nov. 14, 2022
Accepted: Jan. 9, 2023
Published Online: Apr. 6, 2023
The Author Email: Cheng Dewen (cdwlxk@bit.edu.cn)