Laser & Infrared, Volume. 54, Issue 2, 267(2024)
Automatic design of achromatic metalens based on particle swarm and genetic algorithm
[1] [1] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337.
[2] [2] Xiao Bo, Yin, Junsuk, et al. Photonic spin hall effect at metasurfaces[J]. Science, 2013, 339: 1405-1407.
[3] [3] Xingjie N, Zi Jing W, Michael M, et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 2015, 349(6254): 1310-1314.
[4] [4] Dou K, Xie X, Pu M, et al. Off-axis multi-wavelength dispersion controlling metalens for multi-color imaging[J]. Op-to-Electronic Advances, 2020, 3(4): 7.
[5] [5] Shrestha S, Overvig A C, Lu M, et al. Broadband achromatic dielectric metalenses[J]. Light: Science & Applications, 2018, 7(1): 85-96.
[6] [6] Li Y, Li X, Pu M B, et al. Achromatic flat optical components via compensation between structure and material dispersions[J]. Scientific Reports, 2016, 6(1): 19885.
[7] [7] Yan C, Li X, Pu M, et al. Midinfrared real-time polarization imaging with all-dielectric metasurfaces[J]. Applied Physics Letters, 2019, 114(16): 161904.1-161904.5.
[8] [8] Zhao Z, Pu M, Gao H, et al. Multispectral optical metasurfaces enabled by achromatic phase transition[J]. Scientific Reports, 2015, 5(13): 15781.
[9] [9] None. Findings in the area of nanophotonics reported from Huazhong university of science and technology (polarization-insensitive and achromatic metalens at ultraviolet wavelengths)[J]. Nanotechnology Weekly, 2019.
[10] [10] Chen Yufeng, Huang Lingling, Liu Bingyi, et al. Broadband achromatic metalens and meta-deflector based on integrated metasurface[J]. Journal of Physics D: Applied Physics, 2022, 55(2).
[12] [12] M Khorasanineja, Z, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 2017, 17(3): 1819-1824.
[14] [14] Fitas Ricardo, das Neves Carneiro Gonalo, Conceio Antnio Carlos. An elitist multi-objective particle swarm optimization algorithm for composite structures design[J]. Composite Structures, 2022, 300: 116158.
[15] [15] Liu Xu, Li Zhenhao, Xu Peng, et al. Joint optimization for bandwidth utilization and delay based on particle swarm optimization[J]. IEEE ACCESS, 2021, 9: 92125-92133.
[16] [16] Rehman Atiq Ur, Islam Ashhadul, Belhaouari Samir Brahim. Multi-cluster jumping particle swarm optimization for fast convergence[J]. IEEE ACCESS, 2020, 8: 189382-189394.
[17] [17] Liu Tianwei, Bai Jiangbo, Fantuzzi Nicholas, et al. Multi-objective optimisation designs for thin-walled deployable composite hinges using surrogate models and genetic algorithms[J]. Composite Structures, 2022, 280: 114757.
[18] [18] Garca-Carrillo Miguel, Espinoza-Martnez Adriana B., Ramos-de Valle Luis F., et al. Simultaneous optimization of thermal and electrical conductivity of high density polyethylene-carbon particle composites by artificial neural networks and multi-objective genetic algorithm[J]. Computational Materials Science, 2022, 201: 110956.
[19] [19] Kanwal S, Wen J, Yu B, et al. High-efficiency, broadband, near diffraction-limited, dielectric metalens in ultraviolet spectrum[J]. Nanomaterials, 2020, 10(3).
[20] [20] Harish Garg. A hybrid PSO-GA algorithm for constrained optimization problems[J]. Applied Mathematics and Computation, 2016, 274: 292-305.
Get Citation
Copy Citation Text
LI Zhao-hui, LV Yi-hao. Automatic design of achromatic metalens based on particle swarm and genetic algorithm[J]. Laser & Infrared, 2024, 54(2): 267
Category:
Received: Jun. 27, 2023
Accepted: Jun. 4, 2025
Published Online: Jun. 4, 2025
The Author Email: LV Yi-hao (2607495489@qq.com)