Optics and Precision Engineering, Volume. 32, Issue 5, 670(2024)
Online laser absorption spectroscopy detection of trace ethylene in coal pyrolysis
[1] [1] 2022年太阳和风力发电占世界电力创纪录的12%[J]. 中外能源, 2023, 28(8): 100.In2022, solar and wind power generation accounted for a record 12% of the world’s electricity[J]. Sino-Global Energy, 2023, 28(8): 100.(in Chinese)
[2] [2] 李春刚, 安梅. 基于热重-质谱联用技术的新疆准东煤热解特性研究[J]. 宁夏工程技术, 2023, 22(3): 193-198. doi: 10.3969/j.issn.1671-7244.2023.03.003LICH G, ANM. Study on pyrolysis characteristics of Xinjiang Zhundong coal based on TG-MS analysis[J]. Ningxia Engineering Technology, 2023, 22(3): 193-198.(in Chinese). doi: 10.3969/j.issn.1671-7244.2023.03.003
[3] NIU B, NIU M L, ZHANG J T et al. Novel insight into the mechanism of coal hydropyrolysis using deuterium tracer method[J]. Fuel, 321, 124109(2022).
[4] MENG H Y, WANG M Z, WU Z Q et al. Physico-chemical structure and gasification performance of co-pyrolytic char produced by the pyrolysis of polyvinyl chloride blends with two rank coals[J]. ACS Omega, 7, 32280-32291(2022).
[5] [5] 金荣,冷晶晶. 气相色谱法测定工业乙烯含量的方法[J]. 化学,2022(2):199-200.JINR, LENGJ J. Method for determining industrial ethylene content by gas chromatography[J]. Chemical Engineering & Equipment, 2022(2): 199-200. (in Chinese)
[6] GUERRERO-PEÑA A, VÁZQUEZ-HERNÁNDEZ L, BUCIO-GALINDO A et al. Chemical analysis and NIR spectroscopy in the determination of the origin, variety and roast time of Mexican coffee[J]. Heliyon, 9(2023).
[7] KIM G, SHIM H, JUNG S et al. Robustness and performance evaluation of TDLAS sensor for scramjet intake[J]. Aerospace Science and Technology, 141, 108561(2023).
[8] [8] 康虎,张夏,郑世杰等. 基于调制激光光谱吸收的高稳定性气体检测[J/OL]. 激光技术,2023(9):1-13.KANGH, ZHANGX, ZHENGS J, et al. High-stability gas detection based on modulated laser spectral absorption[J/OL]. Laser Technology, 2023(9):1-13. (in Chinese)
[9] [9] 季文海, 吕晓翠, 胡文泽, 等. TDLAS技术在烯烃生产过程中的多组分检测应用[J]. 光学 精密工程, 2018, 26(8): 1837-1845. doi: 10.3788/ope.20182608.1837JIW H, LÜX C, HUW Z, et al. Application of TDLAS technology to multicomponent detection in olefin production process[J]. Opt. Precision Eng., 2018, 26(8): 1837-1845.(in Chinese). doi: 10.3788/ope.20182608.1837
[10] [10] 张志荣, 夏滑, 董凤忠, 等. 利用可调谐半导体激光吸收光谱法同时在线监测多组分气体浓度[J]. 光学 精密工程, 2013, 21(11): 2771-2777. doi: 10.3788/ope.20132111.2771ZHANGZH R, XIAH, DONGF ZH, et al. Simultaneous and on-line detection of multiple gas concentration with tunable diode laser absorption spectroscopy[J]. Optics and Precision Engineering, 2013, 21(11): 2771-2777.(in Chinese). doi: 10.3788/ope.20132111.2771
[11] [11] 潘卫东, 张佳薇, 戴景民, 等. 可调谐半导体激光吸收光谱技术检测痕量乙烯气体的系统研制[J]. 光谱学与光谱分析, 2012, 32(10): 2875-2878. doi: 10.3724/sp.j.1010.2013.00486PANW D, ZHANGJ W, DAIJ M, et al. Tunable diode laser absorption spectroscopy system for trace ethylene detection[J]. Spectroscopy and Spectral Analysis, 2012, 32(10): 2875-2878.(in Chinese). doi: 10.3724/sp.j.1010.2013.00486
[12] WEI Y B, CHANG J, LIAN J et al. A coal mine multi-point fiber ethylene gas concentration sensor[J]. Photonic Sensors, 5, 67-71(2015).
[13] [13] 梁博. 基于可调谐激光技术的煤矿用乙烯痕量气体检测系统研究[D]. 北京: 煤炭科学研究总院, 2017. doi: 10.1109/ccdc.2018.8407781LIANGB. Determination of Trace Ethylene in Coal Mine Based on Tunable Laser Technology Research on Gas Detection[D].Beijing: Chinese Institute Of Coal Science, 2017. (in Chinese). doi: 10.1109/ccdc.2018.8407781
[14] [14] 魏永卜, 邱选兵, 张恩华, 等. 基于数字锁相的激光光谱早期火灾预警系统[J]. 河南师范大学学报(自然科学版), 2020, 48(3): 52-57.WEIY B, QIUX B, ZHANGE H, et al. Early fire warning system based on digital lock-in amplifier using laser spectroscopy technology[J]. Journal of Henan Normal University (Natural Science Edition), 2020, 48(3): 52-57.(in Chinese)
[15] [15] 李晋, 闫浩, 孟杰. 光子晶体光纤气体吸收光谱探测技术研究进展[J]. 光学 精密工程, 2021, 29(10): 2316-2329. doi: 10.37188/ope.2021.0021LIJ, YANH, MENGJ. Research progress of gas absorption spectrum detection technology based on photonic crystal fiber[J]. Opt. Precision Eng., 2021, 29(10): 2316-2329.(in Chinese). doi: 10.37188/ope.2021.0021
[16] [16] 陈颖, 高光珍, 蔡廷栋. 基于光声光谱的乙烯探测技术[J]. 中国激光, 2017, 44(5): 0511001. doi: 10.3788/cjl201744.0511001CHENY, GAOG ZH, CAIT D. Detection technique of ethylene based on photoacoustic spectroscopy[J]. Chinese Journal of Lasers, 2017, 44(5): 0511001.(in Chinese). doi: 10.3788/cjl201744.0511001
[17] [17] 刘英, 胡迈, 王兴平, 等. Ppb级探测灵敏度的CO2腔衰荡光谱仪[J]. 光学 精密工程, 2023, 31(20): 2921-2929. doi: 10.37188/ope.20233120.2921LIUY, HUM, WANGX P, et al. Cavity ring-down spectrometer of CO2 with ppb detection sensitivity[J]. Opt. Precision Eng., 2023, 31(20): 2921-2929.(in Chinese). doi: 10.37188/ope.20233120.2921
[18] [18] 孔安栋, 杨德旺, 郭金家, 等. 腔增强气体拉曼光谱仪在气测录井中的应用[J]. 光学 精密工程, 2022, 30(10): 1151-1159. doi: 10.37188/ope.20223010.1151KONGA D, YANGD W, GUOJ J, et al. Application of cavity-enhanced gas Raman spectroscopy in gas logging[J]. Optics and Precision Engineering, 2022, 30(10): 1151-1159.(in Chinese). doi: 10.37188/ope.20223010.1151
[19] SONG H, LIU G, ZHANG J et al. Pyrolysis characteristics and kinetics of low rank coals by TG-FTIR method[J]. Fuel Processing Technology, 156(2017).
Get Citation
Copy Citation Text
Zheng DUAN, Xingxing MENG, Kailiang LI, Xiaocong SUN, Yali TIAN, Ting GONG, Chuanliang LI, Xuanbing QIU, Tingdong CAI. Online laser absorption spectroscopy detection of trace ethylene in coal pyrolysis[J]. Optics and Precision Engineering, 2024, 32(5): 670
Category:
Received: Oct. 5, 2023
Accepted: --
Published Online: Apr. 2, 2024
The Author Email: Xuanbing QIU (qiuxb@tyust.edu.cn)