Optics and Precision Engineering, Volume. 32, Issue 5, 714(2024)

DRT Net: dual Res-Transformer pneumonia recognition model oriented to feature enhancement

Tao ZHOU1,2, Caiyue PENG1,2、*, Yuhu DU1,2, Pei DANG1,2, Fengzhen LIU1,2, and Huiling LU3
Author Affiliations
  • 1College of Computer Science and Engineering, North Minzu University, Yinchuan75002, China
  • 2Key Laboratory of Image and Graphics Intelligent Processing of State Ethnic Affairs Commission, North Minzu University, Yinchuan75001, China
  • 3School of Medical Information & Engineering, Ningxia Medical University, Yinchuan750004, China
  • show less
    References(26)

    [1] ZHOU T, LIU F Z, LU H L et al. A review of deep learning imaging diagnostic methods for COVID-19[J]. Electronics, 12, 1167(2023).

    [2] TORRES-RAMIREZ C A, TIMARAN-MONTENEGRO D, MATEO-CAMACHO Y S et al. CT-based pathological lung opacities volume as a predictor of critical illness and inflammatory response severity in patients with COVID-19[J]. Heliyon, 8(2022).

    [3] REN K, GU Y, LUO M S et al. Deep-learning-based denoising of X-ray differential phase and dark-field images[J]. European Journal of Radiology, 163, 110835(2023).

    [4] MAMALAKIS M, SWIFT A J, VORSELAARS B et al. DenResCov-19: a deep transfer learning network for robust automatic classification of COVID-19, pneumonia, and tuberculosis from X-rays[J]. Computerized Medical Imaging and Graphics, 94, 102008(2021).

    [5] HE K M, ZHANG X Y, REN S Q et al. Deep residual learning for image recognition[C], 27, 770-778(2016).

    [6] ZHOU T, CHANG X Y, LIU Y C et al. COVID-ResNet: COVID-19 recognition based on improved attention ResNet[J]. Electronics, 12, 1413(2023).

    [7] CHEN Y F, LIN Y L, XU X D et al. Classification of lungs infected COVID-19 images based on inception-ResNet[J]. Computer Methods and Programs in Biomedicine, 225, 107053(2022).

    [8] HUANG Q H, LEI Y, XING W Y et al. Evaluation of pulmonary edema using ultrasound imaging in patients with COVID-19 pneumonia based on a non-local channel attention ResNet[J]. Ultrasound in Medicine & Biology, 48, 945-953(2022).

    [9] AHILA T, SUBHAJINI A C. E-GCS: detection of COVID-19 through classification by attention bottleneck residual network[J]. Engineering Applications of Artificial Intelligence, 116, 105398(2022).

    [10] CHEN B Z, LI J X, GUO X B et al. DualCheXNet: dual asymmetric feature learning for thoracic disease classification in chest X-rays[J]. Biomedical Signal Processing and Control, 53, 101554(2019).

    [11] [11] 吴宣言, 缑新科, 朱子重, 等. 深层聚合残差密集网络的超声图像左心室分割[J]. 中国图象图形学报, 2020, 25(9): 1930-1942. doi: 10.11834/jig.190552WUX Y, GOUX K, ZHUZ ZH, et al. Left ventricular segmentation on ultrasound images using deep layer aggregation for residual dense networks[J]. Journal of Image and Graphics, 2020, 25(9): 1930-1942.(in Chinese). doi: 10.11834/jig.190552

    [12] [12] 李锵, 王旭, 关欣. 一种结合三重注意力机制的双路径网络胸片疾病分类方法[J]. 电子与信息学报, 2023, 45(4): 1412-1425. doi: 10.11999/JEIT220172LIQ, WANGX, GUANX. A dual-path network chest film disease classification method combined with a triple attention mechanism[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1412-1425.(in Chinese). doi: 10.11999/JEIT220172

    [13] [13] 周涛, 刘赟璨, 陆惠玲, 等. ResNet及其在医学图像处理领域的应用:研究进展与挑战[J]. 电子与信息学报, 2022, 44(1): 149-167. doi: 10.11999/JEIT210914ZHOUT, LIUY C, LUH L, et al. ResNet and its application to medical image processing: research progress and challenges[J]. Journal of Electronics & Information Technology, 2022, 44(1): 149-167.(in Chinese). doi: 10.11999/JEIT210914

    [14] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C], 18, 7132-7141(2018).

    [15] [15] 范丽丽, 赵宏伟, 赵浩宇, 等. 基于深度卷积神经网络的目标检测研究综述[J]. 光学 精密工程, 2020, 28(5): 1152-1164.FANL L, ZHAOH W, ZHAOH Y, et al. Survey of target detection based on deep convolutional neural networks[J]. Optics and Precision Engineering, 2020, 28(5): 1152-1164.(in Chinese)

    [16] CHOWDHURY M E H, RAHMAN T, KHANDAKAR A et al. Can AI help in screening viral and COVID-19 pneumonia?[J]. IEEE Access, 8, 132665-132676(2020).

    [17] RAHMAN T, KHANDAKAR A, QIBLAWEY Y et al. Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images[J]. Computers in Biology and Medicine, 132, 104319(2021).

    [18] GAO S H, CHENG M M, ZHAO K et al. Res2Net: a new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 652-662(2021).

    [19] HUANG G, LIU Z, VAN DER MAATEN L et al. Densely connected convolutional networks[C], 21, 2261-2269(2017).

    [20] XIE S N, GIRSHICK R, DOLLAR P et al. Aggregated residual transformations for deep neural networks[C], 21, 1492-1500(2017).

    [21] SANDLER M, HOWARD A, ZHU M L et al. MobileNetV2: inverted residuals and linear bottlenecks[C], 18, 4510-4520(2018).

    [22] CHEN Y P, LI J N, XIAO H X et al. Dual path networks[C], 4470-4478(2017).

    [23] LIU Z, LIN Y T, CAO Y et al. Swin Transformer: hierarchical Vision Transformer using Shifted Windows[C], 10, 10012-10022(2021).

    [24] ALAM N, KOLAWOLE S, SETHI S et al. Vision transformers for mobile applications: a short survey[J]. arXiv preprint, 19365(2023).

    [25] ZHANG H, WU C R, ZHANG Z Y et al. ResNeSt: split-attention networks[C], 19, 2736-2746(2022).

    [26] LIU Z, MAO H, WU C et al. A ConvNet for the 2020s[J]. arXiv preprint(2022).

    Tools

    Get Citation

    Copy Citation Text

    Tao ZHOU, Caiyue PENG, Yuhu DU, Pei DANG, Fengzhen LIU, Huiling LU. DRT Net: dual Res-Transformer pneumonia recognition model oriented to feature enhancement[J]. Optics and Precision Engineering, 2024, 32(5): 714

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 11, 2023

    Accepted: --

    Published Online: Apr. 2, 2024

    The Author Email: Caiyue PENG (peng_caiyue@163.com)

    DOI:10.37188/OPE.20243205.0714

    Topics