Chinese Journal of Lasers, Volume. 48, Issue 17, 1714001(2021)
Tunable-Bandwidth Terahertz Polarization Converter Based on a Vanadium Dioxide Hybrid Metasurface
[1] Kleine-Ostmann T, Nagatsuma T. A review on terahertz communications research[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 32, 143-171(2011).
[2] Wang X, Cui Y, Sun W et al. Terahertz polarization real-time imaging based on balanced electro-optic detection[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 27, 2387-2393(2010).
[3] Chen H L, Bian H T, Li J B et al. Molecular conformations of crystalline L-cysteine determined with vibrational cross angle measurements[J]. The Journal of Physical Chemistry B, 117, 15614-15624(2013).
[4] Wiesauer K, Jördens C. Recent advances in birefringence studies at THz frequencies[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 34, 663-681(2013).
[5] Miao Z Q, Wu Q, Li X et al. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces[J]. Physical Review X, 5, 041027(2015).
[6] Hu F R, Xu X, Li P et al. Mechanically tunable metamaterials terahertz dual-band bandstop filter[J]. Chinese Physics B, 26, 074219(2017).
[7] Shih K, Lee C K, Chen C H et al. Nanofluidic terahertz metasensor for sensing in aqueous environment[J]. Applied Physics Letters, 113, 071105(2018).
[8] Liu W W, Chen S Q, Li Z C et al. Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface[J]. Optics Letters, 40, 3185-3188(2015).
[9] Zheng Q, Guo C J, Vandenbosch G A E et al. Ultra-broadband and high-efficiency reflective polarization rotator based on fractal metasurface with multiple plasmon resonances[J]. Optics Communications, 449, 73-78(2019).
[10] Zhang Y X, Zhao Y C, Liang S X et al. Large phase modulation of THz wave via an enhanced resonant active HEMT metasurface[J]. Nanophotonics, 8, 153-170(2019).
[11] Li D M, Yuan S, Yang R C et al. Dynamical optical-controlled multi-state THz metamaterial absorber[J]. Acta Optica Sinica, 40, 0816001(2020).
[12] Meng Q L, Zhang Y, Zhang B et al. Characteristics of optically tunable multi-band terahertz metamaterial absorber[J]. Laser & Optoelectronics Progress, 56, 101603(2019).
[13] Wang Y R, Liang L J, Yang M S et al. Terahertz metamaterial based on controllable electromagnetic induced transparency structure[J]. Laser & Optoelectronics Progress, 56, 041603(2019).
[14] Li Y R, Luo J, Li X et al. Switchable quarter-wave plate and half-wave plate based on phase-change metasurface[J]. IEEE Photonics Journal, 12, 4600410(2020).
[15] Li T Y, Huang L L, Liu J et al. Tunable wave plate based on active plasmonic metasurfaces[J]. Optics Express, 25, 4216-4226(2017).
[16] Cao T, Wei C W, Simpson R E et al. Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies[J]. Scientific Reports, 4, 3955(2014).
[17] Wang D C, Zhang L C, Gu Y H et al. Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface[J]. Scientific Reports, 5, 15020(2015).
[18] Sun H Y, Zhao L, Dai J S et al. Broadband filter and adjustable extinction ratio modulator based on metal-graphene hybrid metamaterials[J]. Nanomaterials, 10, 1359-1369(2020).
[19] Amin M, Siddiqui O, Farhat M. Linear and circular dichroism in graphene-based reflectors for polarization control[J]. Physical Review Applied, 13, 024046(2020).
[20] Quader S, Zhang J, Akram M R et al. Graphene-based high-efficiency broadband tunable linear-to-circular polarization converter for terahertz waves[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 4501008(2020).
[21] Zhou Y X, Huang Y Y, Jin Y P et al. Terahertz properties of graphene and graphene-based terahertz devices[J]. Chinese Journal of Lasers, 46, 0614001(2019).
[22] Yuan Y H, Chen X Y, Hu F R et al. Terahertz amplitude modulator based on metasurface/Ion-Gel/graphene hybrid structure[J]. Chinese Journal of Lasers, 46, 0614016(2019).
[23] Li H, Yu J, Chen Z. Broadband tunable terahertz absorber based on hybrid graphene-vanadium dioxide metamaterials[J]. Chinese Journal of Lasers, 47, 0903001(2020).
[24] Demir K, Unlu M. Miniature MEMS: novel key components toward terahertz reconfigurability[J]. Journal of Microelectromechanical Systems, 29, 455-467(2020).
[25] Wen Q Y, Zhang H W, Yang Q H et al. Terahertz metamaterials with VO2 cut-wires for thermal tunability[J]. Applied Physics Letters, 97, 021111(2010).
[26] Ruzmetov D, Gopalakrishnan G, Deng J D et al. Electrical triggering of metal-insulator transition in nanoscale vanadium oxide junctions[J]. Journal of Applied Physics, 106, 083702(2009).
[27] Tian X M, Li Z Y. An optically-triggered switchable mid-infrared perfect absorber based on phase-change material of vanadium dioxide[J]. Plasmonics, 13, 1393-1402(2018).
[28] Sanphuang V, Ghalichechian N, Nahar N K et al. Reconfigurable THz filters using phase-change material and integrated heater[J]. IEEE Transactions on Terahertz Science and Technology, 6, 583-591(2016).
[29] Nouman M T, Hwang J H, Faiyaz M et al. Vanadium dioxide based frequency tunable metasurface filters for realizing reconfigurable terahertz optical phase and polarization control[J]. Optics Express, 26, 12922-12929(2018).
[30] Wang S X, Kang L, Werner D H. Active terahertz chiral metamaterials based on phase transition of vanadium dioxide (VO2)[J]. Scientific Reports, 8, 189(2018).
Get Citation
Copy Citation Text
Zhaohui Yang, Mingzhu Jiang, Yongchen Liu, Longhui Zhang, Weilin Xu, Yue'e Wang, Fangrong Hu. Tunable-Bandwidth Terahertz Polarization Converter Based on a Vanadium Dioxide Hybrid Metasurface[J]. Chinese Journal of Lasers, 2021, 48(17): 1714001
Category: terahertz technology
Received: Jan. 19, 2021
Accepted: Mar. 1, 2021
Published Online: Sep. 4, 2021
The Author Email: Hu Fangrong (hufangrong@sina.com)