Journal of Inorganic Materials, Volume. 34, Issue 1, 103(2019)

Fe, N Doped 2D Porous Carbon Bifunctional Catalyst for Zinc-air Battery

Long-Tao MA, Chun-Yi ZHI, [in Chinese], and [in Chinese]
Author Affiliations
  • Department of Materials Science and Engineering, City University of Hong Kong, Hongkong 999077, China
  • show less
    References(28)

    [1] GUO Z, XU Y, ZHANG Y et al. Flexible, stretchable, and rechargeable fiber-shaped zinc-air battery based on cross-stacked carbon nanotube sheets[D]. Angew. Chem. Int. Ed., 54, 15390-15394(2015).

    [2] FU J, LI G, WANG X et al. Pomegranate-inspired design of highly active and durable bifunctional electrocatalysts for rechargeable metal-air batteries[D]. Angew. Chem. Int. Ed., 55, 4977-4982(2016).

    [3] FU J, HASSAN F, LEE D et al. Flexible high-energy polymer- electrolyte-based rechargeable zinc-air batteries[D]. Adv. Mater., 27, 5617-5622(2015).

    [4] ABBASI H, GHORBANI R, SALEHI S et al. Design and manufacturing of a micro zinc-air fuel cell for mobile applications. Iranica[D]. Energy Environ., 4, 110-115(2013).

    [5] KARAHAN H, WEI L, ZHAI S et al. 29(38): 1701410- 1-10[D](2017).

    [6] SUN B, ZHANG J, ZHAO Y et al. Modified tetrathiafulvalene as an organic conductor for improving performances of Li-O2 batteries[D]. Angew. Chem. Int. Ed., 56, 8505-8509(2017).

    [7] LIU B, XU W, YAN P et al. 7(14): 1602605-1-10[D](2017).

    [8] HOU Y, HUANG T, WEN Z et al. 4(11): 1400337-1-8[D](2014).

    [9] NI B, OUYANG C, XU X et al. 29(27): 1701354-1-7[D](2017).

    [10] GUO C, LIU J, ZHU D et al. 7(23): 1700518-1-26[D](2017).

    [11] CHAI G, YE L. 27(14): 1606190-1-8[D](2017).

    [12] WANG J, ZHANG Y, ZHONG H et al. ZIF-8 derived graphene- based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts[D]. Angew. Chem. Int. Ed., 53, 14235-14239(2014).

    [13] CHEN X, LIU B, ZHONG C et al. 7(18): 1700779-1-11[D](2017).

    [14] CHEN S, CHENG J, MA L et al. Light-weight 3D Co-N-doped hollow carbon spheres as efficient electrocatalysts for rechargeable zinc-air batteries[D]. Nanoscale, 10, 10412-10419(2018).

    [15] CHEN S, MA L, PEI Z et al. Single-site active iron-based bifunctional oxygen catalyst for a compressible and rechargeable zinc-air battery[D]. ACS Nano, 12, 1949-1958(2018).

    [16] KOPER M, ZAGAI J. Reactivity descriptors for the activity of molecular MN4 catalysts for the oxygen reduction reaction[D]. Angew. Chem. Int. Ed., 55, 14510-14521(2016).

    [17] WANG J, ZHANG Y, ZHONG H et al. ZIF-8 derived graphene- based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts[D]. Angew. Chem. Int. Ed., 53, 14235-14239(2014).

    [18] CHENG H, LI W, SU C et al. 7(13): 1602420-1-12[D](2017).

    [19] LIU K, MENG F, ZHONG H et al. Recent advances in metal-nitrogen-carbon catalysts for electrochemical water splitting[D]. Mater. Chem. Front., 1, 2155-2173(2017).

    [20] LIU X, ZHANG B, ZHU Y et al. Unravelling the structure of electrocatalytically active Fe-N complexes in carbon for the oxygen reduction reaction[D]. Angew. Chem. Int. Ed., 53, 10673-10677(2014).

    [21] ARMEL V, GOELLNER V, ZITOLO A et al. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials[D]. Nat. Mater., 14, 937-945(2015).

    [22] EDUARDO G, MA J, SHEN H et al. Synergistic effects between atomically dispersed Fe-N-C and C-S-C for the oxygen reduction reaction in acidic media[D]. Angew. Chem. Int. Ed., 129, 13988-13992(2017).

    [23] FAN H, FU K, MA L et al. Metal-organic framework/layered carbon nitride nano-sandwiches for superior asymmetric supercapacitor[D]. Chemistry Select, 1, 3730-3738(2016).

    [24] FAN H, MA L, WANG J et al. Water-assisted ions in situ intercalation for porous polymeric graphitic carbon nitride nanosheets with superior photocatalytic hydrogen evolution performance. Appl. Catal. B:[D]. Environ., 190, 93-102(2016).

    [25] FAN H, FU K, MA L et al[D]. Protonation of g carbon nitride (g-C3N4) for an electrostatically self-assembling carbon@g-C3N4 core-shell nanostructure toward high hydrogen evolution. ACS Sustain. Chem. Eng., 5, 7093-7103(2017).

    [26] FERRERO G, MARINOVIC A, PREUSS K et al. Fe-N-doped carbon capsules with outstanding electrochemical performance and stability for the oxygen reduction reaction in both acid and alkaline conditions[D]. ACS Nano, 10, 5922-5932(2016).

    [27] GU L, JIANG W, LI L et al. Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-N-C.[D]. Am. Chem. Soc., 138, 3570-3578(2016).

    [28] KUCERNAK A, LOPES T, MALKO D. In situ electrochemical quantification of active sites in Fe-N/C non-precious metal catalysts[D]. Nat. Commun., 7, 13285-13292(2016).

    Tools

    Get Citation

    Copy Citation Text

    Long-Tao MA, Chun-Yi ZHI, [in Chinese], [in Chinese]. Fe, N Doped 2D Porous Carbon Bifunctional Catalyst for Zinc-air Battery[J]. Journal of Inorganic Materials, 2019, 34(1): 103

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jun. 11, 2018

    Accepted: --

    Published Online: Feb. 4, 2021

    The Author Email:

    DOI:10.15541/jim20180260

    Topics