Journal of Synthetic Crystals, Volume. 53, Issue 2, 218(2024)

Research Progress on Metal Organic Frameworks Proton Conductor and Their Applications in Proton Exchange Membranes

FU Fengyan, WANG Xiaohong, GAO Zhihua, XING Guang’en, ZHANG Yan, and FAN Pei
Author Affiliations
  • [in Chinese]
  • show less
    References(69)

    [1] [1] HICKNER M A, GHASSEMI H, KIM Y S, et al. Alternative polymer systems for proton exchange membranes (PEMs)[J]. Chemical Reviews, 2004, 104(10): 4587-4611.

    [2] [2] LI Q F, HE R H, JENSEN J O, et al. Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 ℃[J]. Chemistry of Materials, 2003, 15(26): 4896-4915.

    [3] [3] WANG Y, DIAZ D F R, CHEN K S, et al. Materials, technological status, and fundamentals of PEM fuel cells-a review[J]. Materials Today, 2020, 32: 178-203.

    [4] [4] SUH M P, PARK H J, PRASAD T K, et al. Hydrogen storage in metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 782-835.

    [5] [5] YANG D, GATES B C. Catalysis by metal organic frameworks: perspective and suggestions for future research[J]. ACS Catalysis, 2019, 9(3): 1779-1798.

    [6] [6] WANG L, ZHENG M, XIE Z G. Nanoscale metal-organic frameworks for drug delivery: a conventional platform with new promise[J]. Journal of Materials Chemistry B, 2018, 6(5): 707-717.

    [7] [7] YOSHIDA Y, KITAGAWA H. Ionic conduction in metal-organic frameworks with incorporated ionic liquids[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 70-81.

    [8] [8] KANDA S, YAMASHITA K, OHKAWA K. A proton conductive coordination polymer. I.[N, N′-bis(2-hydroxyethyl)dithiooxamido]copper(II)[J]. Bulletin of the Chemical Society of Japan, 1979, 52(11): 3296-3301.

    [9] [9] NAGAO Y, FUJISHIMA M, IKEDA R, et al. Highly proton-conductive copper coordination polymers[J]. Synthetic Metals, 2003, 133/134: 431-432.

    [10] [10] NAGAO Y, KUBO T, NAKASUJI K, et al. Preparation and proton transport property of N, N′-diethyldithiooxamidatocopper coordination polymer[J]. Synthetic Metals, 2005, 154(1/2/3): 89-92.

    [11] [11] SADAKIYO M, YAMADA T, KITAGAWA H. Hydrated proton-conductive metal-organic frameworks[J]. ChemPlusChem, 2016, 81(8): 691-701.

    [12] [12] YE Y X, GONG L S, XIANG S C, et al. Metal-organic frameworks as a versatile platform for proton conductors[J]. Advanced Materials, 2020, 32(21): 1907090.

    [13] [13] YU J C, CUI Y J, WU C D, et al. Second-order nonlinear optical activity induced by ordered dipolar chromophores confined in the pores of an anionic metal-organic framework[J]. Angewandte Chemie International Edition, 2012, 51(42): 10542-10545.

    [14] [14] SI X J, JIA J, BAO Y L, et al. Superprotonic conductivity of a 3D anionic metal-organic framework by synergistic effect of guest[Me2NH2]+ cations, water molecules and host carboxylates[J]. Journal of Solid State Chemistry, 2021, 299: 122168.

    [15] [15] PANDA T, KUNDU T, BANERJEE R. Self-assembled one dimensional functionalized metal-organic nanotubes (MONTs) for proton conduction[J]. Chemical Communications, 2012, 48(44): 5464-5466.

    [16] [16] PANDA T, KUNDU T, BANERJEE R. Structural isomerism leading to variable proton conductivity in indium(iii) isophthalic acid based frameworks[J]. Chemical Communications, 2013, 49(55): 6197-6199.

    [17] [17] HAN Y H, YE Y X, TIAN C B, et al. High proton conductivity in an unprecedented anionic metalloring organic framework (MROF) containing novel metalloring clusters with the largest diameter[J]. Journal of Materials Chemistry A, 2016, 4(48): 18742-18746.

    [18] [18] ZHAI L, YU J W, ZHANG J, et al. High quantum yield pure blue emission and fast proton conduction from an indium metal organic framework[J]. Dalton Transactions, 2019, 48(32): 12088-12095.

    [19] [19] LIU R L, ZHAO L L, YU S H, et al. Enhancing proton conductivity of a 3D metal-organic framework by attaching guest NH3 molecules[J]. Inorganic Chemistry, 2018, 57(18): 11560-11568.

    [20] [20] LI X M, DONG L Z, LI S L, et al. Synergistic conductivity effect in a proton sources-coupled metal-organic framework[J]. ACS Energy Letters, 2017, 2(10): 2313-2318.

    [21] [21] YANG F, XU G, DOU Y B, et al. A flexible metal-organic framework with a high density of sulfonic acid sites for proton conduction[J]. Nature Energy, 2017, 2(11): 877-883.

    [22] [22] PABLO S A, BIGLIONE C, SERGIO M F V, et al. High proton conductivity of a bismuth phosphonate metal-organic framework with unusual topology[J]. Chemistry of Materials, 2023, 35(11): 4329-4337.

    [23] [23] VILELA S M F, SALCEDO-ABRAIRA P, GMEZ-PEA A, et al. Proton conductive Zr-phosphonate UPG-1-aminoacid insertion as proton carrier stabilizer[J]. Molecules, 2020, 25(15): 3519.

    [24] [24] PABLO S A, SRGIO M F V, NIEVES U, et al. Ion-exchanged UPG-1 as potential electrolyte for fuel cells[J]. Inorganic Chemistry, 2021, 60(16): 11803-11812.

    [25] [25] ZHANG F M, DONG L Z, QIN J S, et al. Effect of imidazole arrangements on proton-conductivity in metal-organic frameworks[J]. Journal of the American Chemical Society, 2017, 139(17): 6183-6189.

    [26] [26] SARANGO-RAMREZ M K, LIM D W, KOLOKOLOV D I, et al. Superprotonic conductivity in metal-organic framework via solvent-free coordinative urea insertion[J]. Journal of the American Chemical Society, 2020, 142(15): 6861-6865.

    [27] [27] CHEN H, HAN S Y, LIU R H, et al. High conductive, long-term durable, anhydrous proton conductive solid-state electrolyte based on a metal-organic framework impregnated with binary ionic liquids: synthesis, characteristic and effect of anion[J]. Journal of Power Sources, 2018, 376: 168-176.

    [28] [28] SUN X L, DENG W H, CHEN H, et al. A metal-organic framework impregnated with a binary ionic liquid for safe proton conduction above 100 ℃[J]. Chemistry-A European Journal, 2017, 23(6): 1248-1252.

    [29] [29] LI X M, WANG Y M, WU B K, et al. Efficient proton transport in stable functionalized channels of zirconium metal-organic frameworks[J]. ACS Applied Energy Materials, 2021, 4(8): 8303-8310.

    [30] [30] XU Q X, ZHANG X P, ZENG S J, et al. Ionic liquid incorporated metal organic framework for high ionic conductivity over extended temperature range[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(8): 7892-7899.

    [31] [31] TAYLOR J M, KOMATSU T, DEKURA S, et al. The role of a three dimensionally ordered defect sublattice on the acidity of a sulfonated metal-organic framework[J]. Journal of the American Chemical Society, 2015, 137(35): 11498-11506.

    [32] [32] TAYLOR J M, DEKURA S, IKEDA R, et al. Defect control to enhance proton conductivity in a metal-organic framework[J]. Chemistry of Materials, 2015, 27(7): 2286-2289.

    [33] [33] ZHENG J Y, WANG Q M, JIANG F Q, et al. Enhanced proton conductivity by incorporating sulfonic acid groups into a zirconium-based metal-organic framework via ligand exchange[J]. Journal of Solid State Chemistry, 2023, 324: 124070.

    [34] [34] LIU S S, HAN Z, YANG J S, et al. Sulfonic groups lined along channels of metal-organic frameworks (MOFs) for super-proton conductor[J]. Inorganic Chemistry, 2020, 59(1): 396-402.

    [35] [35] YANG F, SHI R M, HUANG H L, et al. Nanochannel engineering in metal-organic frameworks by grafting sulfonic groups for boosting proton conductivity[J]. ACS Applied Energy Materials, 2022, 5(3): 3235-3241.

    [36] [36] LIU Q Q, LIU S S, LIU X F, et al. Superprotonic conductivity of UiO-66 with missing-linker defects in aqua-ammonia vapor[J]. Inorganic Chemistry, 2022, 61(8): 3406-3411.

    [37] [37] BASU O, MUKHOPADHYAY S, LAHA S, et al. Defect engineering in a metal-organic framework system to achieve super-protonic conductivity[J]. Chemistry of Materials, 2022, 34 (15): 6734-6743.

    [38] [38] SZUFLA M, NAVARRO J A R, GRA-MAREK K, et al. Effect of missing-linker defects and ion exchange on stability and proton conduction of a sulfonated layered Zr-MOF[J]. ACS Applied Materials & Interfaces, 2023, 15(23): 28184-28192.

    [39] [39] SUN WANG H L, YU J S, et al. Recent progress on proton-conductive metal-organic frameworks and their proton exchange membranes[J]. Acta Chimica Sinica, 2020, 78(9): 888-900 (in Chinese).

    [40] [40] LI W, SAMARASINGHE S A S C, BAE T H. Enhancing CO2/CH4 separation performance and mechanical strength of mixed-matrix membrane via combined use of graphene oxide and ZIF-8[J]. Journal of Industrial and Engineering Chemistry, 2018, 67: 156-163.

    [41] [41] LIU Y R, CHEN Y Y, ZHUANG Q, et al. Recent advances in MOFs-based proton exchange membranes[J]. Coordination Chemistry Reviews, 2022, 471: 214740.

    [42] [42] WANG R J, LIU S S, WANG L D, et al. Understanding of nanophase separation and hydrophilic morphology in nafion and SPEEK membranes: a combined experimental and theoretical studies[J]. Nanomaterials, 2019, 9(6): 869.

    [43] [43] BAO Y L, ZHENG J Y, ZHENG H P, et al. Cu-MOF@PVP/PVDF hybrid composites as tunable proton-conducting materials[J]. Journal of Solid State Chemistry, 2022, 310: 123070.

    [44] [44] YIN C S, HE C Q, LIU Q C, et al. Free volume, gas permeation, and proton conductivity in MIL-101-SO3H/Nafion composite membranes[J]. Physical Chemistry Chemical Physics, 2019, 21(47): 25982-25992.

    [45] [45] HUANG S Z, LIU S S, ZHANG H J, et al. Dual-functional proton-conducting and pH-sensing polymer membrane benefiting from a Eu-MOF[J]. ACS Applied Materials & Interfaces, 2020, 12(25): 28720-28726.

    [46] [46] FENG L, HOU H, ZHOU H. UiO-66 derivatives and their composite membranes for effective proton conduction[J]. Dalton Transactions, 2020,49(47): 17130-17139.

    [47] [47] BIRADHA K, GOSWAMI A, MOI R, et al. Metal-organic frameworks as proton conductors: strategies for improved proton conductivity[J]. Dalton Transactions, 2021, 50(31): 10655-10673.

    [48] [48] RAO Z A, TANG B B, WU P Y. Proton conductivity of proton exchange membrane synergistically promoted by different functionalized metal-organic frameworks[J]. ACS Applied Materials & Interfaces, 2017, 9(27): 22597-22603.

    [49] [49] WANG H F, ZHAO Y J, SHAO Z C, et al. Proton conduction of nafion hybrid membranes promoted by NH3-modified Zn-MOF with host-guest collaborative hydrogen bonds for H2/O2 fuel cell applications[J]. ACS Applied Materials & Interfaces, 2021, 13(6): 7485-7497.

    [50] [50] WANG H F, WEN T Y, SHAO Z C, et al. High proton conductivity in nafion/Ni-MOF composite membranes promoted by ligand exchange under ambient conditions[J]. Inorganic Chemistry, 2021, 60(14): 10492-10501.

    [51] [51] DING L, ZOU H Q, LU J, et al. Enhancing proton conductivity of nafion membrane by incorporating porous Tb-metal-organic framework modified with nitro groups[J]. Inorganic Chemistry, 2022, 61(40): 16185-16196.

    [52] [52] LIU X T, WANG B C, HAO B B, et al. Dual-functional coordination polymers with high proton conduction behaviour and good luminescence properties[J]. Dalton Transactions, 2021, 50(25): 8718-8726.

    [53] [53] RANA MUHAMMAD N J, AMANI A O, MUHAMMAD T, et al. Recent developments in graphene and graphene oxide materials for polymer electrolyte membrane fuel cells applications[J]. Renewable and Sustainable Energy Reviews, 2022, 168: 112836.

    [54] [54] FU F Y, ZHANG J, CHENG J Q, et al. Application of graphene oxide in proton exchange membrane for fuel cell[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2233-2241 (in Chinese).

    [55] [55] CAI Y Y, WANG J J, CAI Z H, et al. Enhanced performance of sulfonated poly(ether ether ketone) hybrid membranes by introducing sulfated MOF-808/graphene oxide composites[J]. ACS Applied Energy Materials, 2021, 4(9): 9664-9672.

    [56] [56] CAI Y Y, ZHANG Q G, ZHU A M, et al. Two-dimensional metal-organic framework-graphene oxide hybrid nanocomposite proton exchange membranes with enhanced proton conduction[J]. Journal of Colloid and Interface Science, 2021, 594: 593-603.

    [57] [57] RAY M, SAMANTARAY P K, NEGI Y S. In situ polymerization-mediated cross-linking of the MOF using poly(1-vinylimidazole) in SPEEK fuel cells[J]. ACS Applied Polymer Materials, 2023, 5(7): 4704-4715.

    [58] [58] WANG L Y, DENG N P, WANG G, et al. Constructing amino-functionalized flower-like metal-organic framework nanofibers in sulfonated poly(ether sulfone) proton exchange membrane for simultaneously enhancing interface compatibility and proton conduction[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 39979-39990.

    [59] [59] XING Y Y, WANG J A, ZHANG C X, et al. High proton conductivity of the UiO-66-NH2-SPES composite membrane prepared by covalent cross-linking[J]. ACS Applied Materials & Interfaces, 2023, 15(27): 33003-33012.

    [60] [60] DONG X Y, WANG J H, LIU S S, et al. Synergy between isomorphous acid and basic metal-organic frameworks for anhydrous proton conduction of low-cost hybrid membranes at high temperatures[J]. ACS Applied Materials & Interfaces, 2018, 10(44): 38209-38216.

    [61] [61] CUI F Y, WANG W Y, LIU C N, et al. Carbon nanocomposites self-assembly UiO-66-doped chitosan proton exchange membrane with enhanced proton conductivity[J]. International Journal of Energy Research, 2020, 44(6): 4426-4437.

    [62] [62] WU G M, WANG Y L, QIAO N, et al. High proton conduction behavior of a water-stable cadmium organic framework and its polymer composite membranes[J]. Journal of the Electrochemical Society, 2021, 168(6): 064518.

    [63] [63] CHEN X, ZHANG S L, XIAO S H, et al. Ultrahigh proton conductivities of postmodified Hf(IV) metal-organic frameworks and related chitosan-based composite membranes[J]. ACS Applied Materials & Interfaces, 2023, 15(29): 35128-35139.

    [64] [64] MOORTHY S, SIVASUBRAMANIAN G, KANNAIYAN D, et al. Neoteric advancements in polybenzimidazole based polymer electrolytes for high-temperature proton exchange membrane fuel cells-A versatile review[J]. International Journal of Hydrogen Energy, 2023, 48(72): 28103-28118.

    [65] [65] CHEN J L, WANG L, WANG L. Highly conductive polybenzimidazole membranes at low phosphoric acid uptake with excellent fuel cell performances by constructing long-range continuous proton transport channels using a metal-organic framework (UIO-66)[J]. ACS Applied Materials & Interfaces, 2020, 12(37): 41350-41358.

    [66] [66] MUKHOPADHYAY S, DAS A, JANA T, et al. Fabricating a MOF material with polybenzimidazole into an efficient proton exchange membrane[J]. ACS Applied Energy Materials, 2020, 3(8): 7964-7977.

    [67] [67] MUKHOPADHYAY S, DEBGUPTA J, SINGH C, et al. Designing UiO-66-based superprotonic conductor with the highest metal-organic framework based proton conductivity[J]. ACS Applied Materials & Interfaces, 2019, 11(14): 13423-13432.

    [68] [68] LIU Y P, CHEN J L, FU X Z, et al. Constructing proton transport channels in low phosphoric-acid doped polybenzimidazole membrane by introducing metal-organic frameworks containing phosphoric-acid groups[J]. Journal of Power Sources, 2021, 507: 230316.

    [69] [69] WANG P, WU Y N, LIN W J, et al. Constructing unique carboxylated proton transport channels via the phosphoric acid etching of a metal-organic framework in a crosslinked branched polybenzimidazole[J]. Journal of Materials Chemistry A, 2022, 10(43): 23058-23067.

    Tools

    Get Citation

    Copy Citation Text

    FU Fengyan, WANG Xiaohong, GAO Zhihua, XING Guang’en, ZHANG Yan, FAN Pei. Research Progress on Metal Organic Frameworks Proton Conductor and Their Applications in Proton Exchange Membranes[J]. Journal of Synthetic Crystals, 2024, 53(2): 218

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 9, 2023

    Accepted: --

    Published Online: Jul. 30, 2024

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics