Laser & Optoelectronics Progress, Volume. 58, Issue 22, 2210007(2021)

Grouped Double Attention Network for Semantic Segmentation

Xiaolong Chen1、*, Ji Zhao1,2, Siyi Chen1、**, Xinhao Du1, and Xin Liu1
Author Affiliations
  • 1School of Automation and Electronic Information, Xiangtan University, Xiangtan, Hunan 411100 China
  • 2National CIMS Engineering Technology Research Center, Tsinghua University, Beijing 100084, China
  • show less
    Figures & Tables(13)
    Structure of the grouped double attention network
    Structure of the GPAM
    Structure of the GCAM
    Attention maps of CAM and GCAM. (a) CAM; (b) GCMA
    Segmentation results of different methods. (a) Original image; (b) real semantic label; (c) basic method; (d) our method
    • Table 1. Influence of the number of GPAM groups on network performance

      View table

      Table 1. Influence of the number of GPAM groups on network performance

      MethodBackbonePAMGNPmIoU /%
      Baseline1ResNet5069.8
      Baseline2ResNet5083.2
      Our1ResNet50184.1
      Our2ResNet50284.9
      Our3ResNet50484.4
      Our4ResNet50884.2
      Our5ResNet501682.9
      Our6ResNet506481.1
    • Table 2. Influence of the number of GPAM basis sets on network performance

      View table

      Table 2. Influence of the number of GPAM basis sets on network performance

      MethodBackbonePAMNBPmIoU /%
      Baseline2ResNet5083.2
      Our7ResNet503285.0
      Our8ResNet501685.0
      Our2ResNet50884.9
    • Table 3. Influence of the number of GCAM groups on network performance

      View table

      Table 3. Influence of the number of GCAM groups on network performance

      MethodBackboneCAMGNCmIoU /%
      Baseline3ResNet5082.6
      Our-1ResNet50883.9
      Our-2ResNet501684.1
      Our-3ResNet503284.9
    • Table 4. Memory occupied by CAM and GCAM

      View table

      Table 4. Memory occupied by CAM and GCAM

      MethodGNCMemory /GmIoU /%
      CAM--1.0082.6
      GCAM80.8583.9
      GCAM160.7384.1
      GCAM320.6884.9
    • Table 5. Influence of the size of the GCAM pooling on segmentation performance

      View table

      Table 5. Influence of the size of the GCAM pooling on segmentation performance

      MethodBackboneCAMPSCmIoU /%
      Baseline3ResNet5082.6
      Our-4ResNet50484.7
      Our-3ResNet50884.9
      Our-5ResNet501684.3
    • Table 6. Experimental results of grouped double attention network and Baseline

      View table

      Table 6. Experimental results of grouped double attention network and Baseline

      MethodPAMCAMGPAMGCAMmIoU /%
      Baseline169.8
      Baseline283.2
      Baseline382.6
      Our785.0
      Our-384.9
      GDANet85.6
    • Table 7. Experimental results of different methods in the PASCAL VOC2012 validation set unit: %

      View table

      Table 7. Experimental results of different methods in the PASCAL VOC2012 validation set unit: %

      MethodFCNDeepLabv2DPN[25]DeepLabv3PSPDANetOurs
      Aero82.484.487.788.087.490.192.8
      Bike47.454.559.456.356.361.867.8
      Bird81.281.578.486.385.791.791.8
      Boat68.663.664.969.479.475.682.5
      Bottle75.365.970.372.273.875.676.7
      Bus81.385.189.390.392.393.195.0
      Car79.979.183.585.787.388.590.7
      Cat81.683.486.189.692.392.992.7
      Chair33.730.731.728.953.353.461.7
      Cow68.474.179.985.990.493.394.8
      Table52.359.862.659.375.274.381.3
      Dog76.47981.984.287.39293.5
      Horse64.976.18080.285.989.192.4
      Mbike73.483.283.584.283.885.488.7
      Person81.280.882.382.884.585.788.3
      Plant56.759.760.556.068.162.870.0
      Sheep69.782.283.278.58791.692.6
      Sofa50.950.453.451.67374.678.1
      Train78.573.177.984.591.190.292.0
      Tv70.163.765.069.671.573.177.1
      mIoU69.871.674.175.180.982.485.6
    • Table 8. Experimental results of different methods on the Cityscapes validation set unit: %

      View table

      Table 8. Experimental results of different methods on the Cityscapes validation set unit: %

      MethodFCNPSPDANetOursMethodFCNPSPDANetOurs
      Road95.196.497.297.5Sky91.49292.492.8
      Sidewalk67.874.477.879.3Person68.870.471.972.9
      Building88.589.189.890.1Rider47.949.952.253.3
      Wall50.552.956.157.1Car90.391.492.492.4
      Fence44.647.948.651.2Truck73.873.982.879.2
      Pole35.639.940.843.4Bus73.675.879.481.9
      Traffic light47.051.953.053.5Train62.866.470.874.5
      Traffic sign60.462.465.266.4Motocycle51.755.058.958.7
      Vegetation88.689.489.789.9Bicycle63.163.665.866.7
      Terrain55.657.660.760.9
      mIoU66.268.470.871.7mIoU66.268.470.871.7
    Tools

    Get Citation

    Copy Citation Text

    Xiaolong Chen, Ji Zhao, Siyi Chen, Xinhao Du, Xin Liu. Grouped Double Attention Network for Semantic Segmentation[J]. Laser & Optoelectronics Progress, 2021, 58(22): 2210007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Nov. 12, 2020

    Accepted: Jan. 27, 2021

    Published Online: Oct. 29, 2021

    The Author Email: Xiaolong Chen (350071235@qq.com), Siyi Chen (c.siyi@xtu.edu.cn)

    DOI:10.3788/LOP202158.2210007

    Topics