Acta Optica Sinica, Volume. 44, Issue 15, 1513016(2024)

Research Progress in Silicon Optical Switching Devices (Invited)

Weijie Tang1,2 and Tao Chu1、*
Author Affiliations
  • 1College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, Zhejiang , China
  • 2Research Center for Frontier Fundamental Studies, Zhejiang Laboratory, Hangzhou 311121, Zhejiang , China
  • show less
    Figures & Tables(26)
    Global data generated annually[1]
    Evolution trend of data center network. (a) Traditional data center network; (b) disaggregated optical transmission network; (c) disaggregated and optical switching networks
    Integrated optical switching devices on different material platforms. (a) Planar silica integrated optical switching device[11]; (b) III-V material integrated optical switching device[12-13]; (c) Ti∶LiNbO3 optical switching device[14]; (d) optical switching device on TFLN-OI[15]; (e) PLZT waveguide integrated optical switching device[16]; (f) silicon MEMS integrated optical switching device[17]; (g) silicon optical switching device[18]
    Development of silicon thermo-optic switching devices[37-46]
    Development of silicon electro-optic switching device[18,47-54]
    Common networks used for constructing large-scale integrated optical switching devices. (a) Benes network; (b) PILOSS network; (c) S&S network; (d) double layer network
    Optimization approaches for optical switching units. (a) Switching unit with cascaded DC couplers[47]; (b) exchanged switching unit at outputend[57]; (c) switching unit with bent waveguide DC couplers[58]; (d) switching unit with adiabatic DC couplers[59]; (e) switching unit with adjustable splitting ratio[66]; (f) switching unit with array of MZIs[61]; (g) double-MZI switching unit[20]; (h) nested-MZI switching unit[62]; (i) switching unit with phase pre-bias[18]; (j) switching unit with wide waveguide phase shifters[63]; (k) calibration-free MZI switching unit[64]; (l) switching unit with three-section waveguide phase shifters[65]; (m) PIN diode switching unit vertically stacked with micro-heater[52]; (n) PIN diode switching unit with micro-heater in series[54]
    Integrated optical crossing devices. (a) Crossing waveguide with three-mode synthesis[73]; (b) crossing waveguide with inverted tapers[74]; (c) crossing waveguide optimized with PSO[75]; (d) subwavelength grating crossing waveguide[76]; (e) crossing waveguide with lateral subwavelength nanostructures[77]; (f) inverse-designed crossing waveguide[78]; (g) ultra-compact crossing waveguide[79]; (h) crossing waveguide with curved anisotropic metamaterial[80]; (i) star-crossing waveguide[81]; (j) three-dimensional crossing waveguide device[82]
    Several types of grating couplers. (a) Polysilicon grating[84]; (b) double-etched grating[85]; (c) grating with subwavelength structure[86]; (d) grating with bottom reflector[87]; (e) Si-SiN dual-layer grating[88]; (f) one-dimensional inverse design grating[89]; (g) two-dimensional multi-layer inverse design grating[90]; (h) plasmonic grating[91]
    Edge couplers. (a) Edge coupler with SiN waveguide[92]; (b) edge coupler with two-layer Si waveguide[93]; (c) edge coupler with metamaterial structure[94]; (d) edge coupler using silica-based connecting device[95]
    Some other types of optical coupling methods. (a) 45° curved micro-mirror[99]; (b) vertically curved Si waveguide coupler[100]; (c) coupling with microlenses on the backside[103]; (d) photonic wire coupling[107]
    Silicon optical switching devices integrated with on-chip optical amplifier. (a) Integration of optical amplifiers through flip-chip bonding[109]; (b) integration of optical amplifiers through chip facet butt-coupling[111]
    Heterogeneous integrated devices via molecular bonding and epitaxy growth. (a) Integrated quantum dot laser via molecular bonding[115]; (b) integrated quantum dot laser via epitaxial growth[114]
    Impact of crosstalk on the testing of switching units in Benes network
    Calibration methods for optical switching units: (a) Setting up monitoring points at the four ports of each switching unit[52]; (b) using integrated detectors to monitor two output ports of each switching unit[119]; (c) monitoring point setting based on Benes network characteristics[18]
    System-level calibration methods for optical switching devices. (a) Multi-port input switching unit calibration method[121]; (b) system calibration method based on pulse response[122]
    Optical packaging methods. (a) Packaging with grating array coulping; (b) packaging with edge coupler array
    Electrical packaging methods. (a) Monolithic integration of electronic and photonic devices[51]; (b) wire welding at the edge of the optical chip[42,56]; (c) fan out the electrical interface through the interposer[41]; (d) photoelectric hybrid package on glass substrates[123]
    Three-dimensional packaging schematic of the optical switching chip
    • Table 1. Comparison of on-chip optical switching device on different material platforms

      View table

      Table 1. Comparison of on-chip optical switching device on different material platforms

      PlatformSwitching timeSizeMechanical stabilityCostPower
      Silicaμscm to dmHighMediumHigh
      III-VnsmmHighHighMedium
      Ti∶LiNbO3nscm to dmHighHighLow
      TFLN-OIHundreds of picosecondsmm to cmHighMediumLow
      PLZTmm to cmHighHighLow
      MEMS on SOIHundreds of nanosecondsmmLowLowLow
      SOImmHighLowLow
    • Table 2. Comparison of key parameters for silicon thermo-optic and electro-optic optical path switching devices

      View table

      Table 2. Comparison of key parameters for silicon thermo-optic and electro-optic optical path switching devices

      YearInstituteDevice typeScaleUnit loss /dBLoss on chip /dBSwitch timePowerSize /mm2Cross talk /dB
      2024SJTU45TO6×6 Spanke-Benes-0.5--0.9-1.2--3.2--1.5×0.6-22
      2023SJTU44TO32×32 S&S-0.4-6.68388-452 μs0.98 W18×24-20.7
      2020AIST46TO32×32About 0.2-35--22.5×10-3.7--8.8
      2018ISCAS43TO64×64 Benes-12--1831-42 μs-21.7×9.6-30.7--48.3
      2016Huawei42TO32×32-0.58-23--28750 μs<1 W12.3×12.3-18--32
      2015AIST41TO32×32 PILOSS-0.44-15.830 μs2.93 W11×25<-20
      2015NEC40TO8×8-9150 μs-12×14-35
      2014AIST39TO8×8 PILOSS-0.5-6.5250 μs-3.5×2.4-23.1
      2012Bell38TO8×8 S&S-0.33-4250 μs70 mW8×8<-30
      2005OITDA37TO1×4

      -22 (TE)

      -15 (TM)

      100 μs170 mW0.19×0.075<-30
      2022AIST54EO8×8 PILOSS-0.1--1-3.88 ns-13×13-30
      2020IBM53EO8×8-0.8About -4<10 ns1.9 W12×7<-30
      2017ISCAS18EO32×32 Benes-1.3--1.5-12.9--18.51-1.2 ns542.3 mW12.1×5.2-15.1--24.8
      2016SJTU52EO16×16 Benes-0.44--1.44-6.7--143.2 ns/2.5 ns1.17 W10.7×4.4-20
      2011IBM50EO4×4-1-0.6--5.8<4 ns20.4 mW0.3×1.6-9
    • Table 3. Performance comparison of different network structures

      View table

      Table 3. Performance comparison of different network structures

      TopologyBehaviorTotal number of switch unitsNumber of switch units in the longest pathNumber of crossings in the longest path
      PILOSSStrict nonblockingN2NN-1
      S&SStrict nonblocking2N2-2N2log2NN-1)2
      Double layerStrict nonblocking(5/4)N2-2N2log2N-13N-2log2N-4
      BenesRearrangable nonblockingNlog2N-N/22log2N-12N-2log2N-2
    • Table 4. Comparison of different types of optical path switching units

      View table

      Table 4. Comparison of different types of optical path switching units

      YearInstituteDevice featureDevicetypeLoss /dBCrosstalk /dBPower /mWBandwidth /nmSize /(μm×μm)
      2019IBM67Low-loss DC splitterEO-0.8-28-5-
      2009IBM47Cascaded DC splitterEO-1.1--2.9-17311050×400
      2016ZJU58Bent DC SplitterTO<-1-20140About 50×170
      2013MIT59Adiabatic DC SplitterTO<-2012.770
      2024SEU60Variable splitterTO-2.9

      About

      -58.8

      2.32
      2010AIST61Array of MZIsTO-16-30--50160>80About600×700
      2021AIST71Double-MZITO-0.8-359.6-12>10
      2016IBM62Nested-MZIEO

      About

      -2

      <-34<34
      2017ISCAS18Phase pre-biasEO-1.3--1.5About-20About1.7-3.7

      About

      100×600

      2021ZJU63Wide waveguide phase shiftersTOAbout -1<-3030.6>60

      About

      50×180

      2022ZJU64Wide waveguide phase shifters with TES-bend and the bent-ADC mode filterTOAbout -0.5<-273460About30×180
      2024SJTU65Three-section waveguide phase shiftersEO-27
      2016SJTU52PIN diode with vertically stacked micro-heatersEOAbout -1-18--30

      3.28-5.88 (EO)

      0-26 (TO)

      30
      2022AIST54PIN diode with micro-heater in seriesEO-1
    • Table 5. Comparison of different types of silicon crossing waveguide

      View table

      Table 5. Comparison of different types of silicon crossing waveguide

      YearInstituteDevice featureCouplingloss /dBCrosstalk /dBSize /(μm×μm)
      2017Huawei73Three-mode synthesis-0.007-4030×30
      2022ZJU74Mode synthesis+inverse taper-0.008-4018×18
      2013UD75PSO-0.0168-379×9
      2010NRC76Subwavelength grating-0.023-403×10
      2013UT77Crossing array with lateral subwavelength nanostructures-0.02-403.08×3.08
      2019CUHK78Inverse design-0.2-283×3
      2018NJU79Ultra-compact-0.28-301×1
      2023McGill80Curved anisotropic metamaterial-0.264-30.99.78×9.78
      2018WRI81Star-crossing-0.133-4879.4×79.4
      2023ZJU82Three-dimensional crossing-0.00082-48
    • Table 6. Comparison of key parameters for different types of optical couplers

      View table

      Table 6. Comparison of key parameters for different types of optical couplers

      YearInstituteDevice typeDesign featureCoupling loss /dBBandwidth /nmFeaturesize /nm
      2015CU-Boulder84GratingDouble layer polysilicon grating-1.278 (1 dB)150
      2014IME85GratingDouble etched Si grating-250 (3 dB)200
      2015University of Žilina86GratingSubwavelength structure+double etching-1.352 (3 dB)100
      2014University of Rennes87GratingSubwavelength structure+metal mirror-0.5871 (3 dB)100
      2014UofT88GratingSi-SiN dual-level grating-1.380 (1 dB)200
      2019Stanford University89Grating1D inverse design-3--5.4120 (3 dB)100
      2022Georgia Tech90Grating2D inverse design-4.775 (3 dB)
      2019ETH Zurich91GratingPlasmonic structure-2.9115 (1 dB)150
      2018IMEC92Edge couplerSiN WG+suspending structure

      -2.5 (O Band)

      -2 (C+L Band)

      130
      2018IME93Edge couplerDouble layer Si taper WG+suspending structure-1.3 (C Band)105
      2019IBM94Edge couplerMetamaterial structure+V groove

      -0.7 (TE)

      -1.4 (TM)

      60115
      2018AIST95Edge couplerSilica-based connecting device-1.4About 100
      2020AIST99Integrated mirror45° curved micro-mirror-3.3About 100
      2020AIST100Vertically curved Si waveguideSi WG bent by ion implantation-1.6180 (1 dB)50
      2021UGent103Backside couplermicrolenses on the backside-0.5--1 (additional loss)
      2020KIT108Photonic wire bonds3D free structure defined by two-photon lithography-0.7
    • Table 7. Optical packaging loss of silicon optical switching devices

      View table

      Table 7. Optical packaging loss of silicon optical switching devices

      YearInstituteDevice typeScalePackaging loss /dBCoupling type
      2022SJTU56TO32×32 (S&S)-5.6Edge
      2022AIST54EO8×8 (PILOSS)-2.8Edge
      2020IBM53EO8×8-3-5Edge
      2018AIST57TO32×32 (PILOSS)-2.8Edge
      2018HW119TO32×32-6.5Edge
      2016SJTU52EO16×16 (Benes)-10Grating
      2015NEC40TO8×8About -2Edge
      2014AIST39TO8×8 (PILOSS)-7.2Edge
    Tools

    Get Citation

    Copy Citation Text

    Weijie Tang, Tao Chu. Research Progress in Silicon Optical Switching Devices (Invited)[J]. Acta Optica Sinica, 2024, 44(15): 1513016

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Integrated Optics

    Received: May. 7, 2024

    Accepted: Jun. 24, 2024

    Published Online: Aug. 5, 2024

    The Author Email: Chu Tao (chutao@zju.edu.cn)

    DOI:10.3788/AOS240967

    CSTR:32393.14.AOS240967

    Topics