Chinese Journal of Liquid Crystals and Displays, Volume. 36, Issue 8, 1186(2021)
Spatio-temporal deep learning fire smoke detection
[4] [4] BARMPOUTIS P, DIMITROPOULOS K, GRAMMALIDIS N. Smoke detection using spatio-temporal analysis, motion modeling and dynamic texture recognition [C]//Proceedings of the 2014 22nd European Signal Processing Conference. Lisbon: IEEE, 2014: 1078-1082.
[5] [5] PARK J O, KO B C, NAM J Y, et al. Wildfire smoke detection using spatiotemporal bag-of-features of smoke [C]//Proceedings of 2013 IEEE Workshop on Applications of Computer Vision. Clearwater Beach: IEEE, 2013: 200-205.
[7] [7] ZHAO Y Q, LI Q J, GU Z. Early smoke detection of forest fire video using CS Adaboost algorithm [J]. Optik-International Journal for Light and Electron Optics, 2015, 126(19): 2121-2124.
[14] [14] TRAN D, WANG H, TORRESANI L, et al. A closer look at spatiotemporal convolutions for action recognition [C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6450-6459.
[15] [15] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift [C]//Proceedings of the 32nd International Conference on Machine Learning. Lille: JMLR.org, 2015: 448-456.
[16] [16] GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks [J]. Journal of Machine Learning Research, 2011, 15: 315-323.
[17] [17] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
[19] [19] YUAN F N. Video-based smoke detection with histogram sequence of LBP and LBPV pyramids [J]. Fire Safety Journal, 2011, 46(3): 132-139.
Get Citation
Copy Citation Text
WU Fan, WANG Hui-qin, WANG Ke. Spatio-temporal deep learning fire smoke detection[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(8): 1186
Category:
Received: Sep. 13, 2020
Accepted: --
Published Online: Sep. 4, 2021
The Author Email: