Chinese Journal of Lasers, Volume. 49, Issue 7, 0714002(2022)

High-Frequency Terahertz Wave Generation with Cascaded Difference Frequency Generation at Polariton Resonance

Zhongyang Li1、*, Qianze Yan1, Gege Zhang1, Jia Zhao1, binzhe Jiao1, Xiangqian Sun1, Pibin Bing1, Sheng Yuan1, and Jianquan Yao2
Author Affiliations
  • 1College of Electric Power, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450045, China
  • 2College of Precision Instrument and Opto-Electronics Engineering, Institute of Laser and Opto-Electronics, Tianjin University, Tianjin 300072, China
  • show less
    References(32)

    [1] Cocker T L, Jelic V, Gupta M et al. An ultrafast terahertz scanning tunnelling microscope[J]. Nature Photonics, 7, 620-625(2013).

    [2] Peretti R, Mitryukovskiy S, Froberger K et al. THz-TDS time-trace analysis for the extraction of material and metamaterial parameters[J]. IEEE Transactions on Terahertz Science and Technology, 9, 136-149(2019).

    [3] Smolyanskaya O A, Schelkanova I J, Kulya M S et al. Glycerol dehydration of native and diabetic animal tissues studied by THz-TDS and NMR methods[J]. Biomedical Optics Express, 9, 1198-1215(2018).

    [4] Kärtner F X, Ahr F, Calendron A L et al. AXSIS: exploring the frontiers in attosecond X-ray science, imaging and spectroscopy[J]. Nuclear Instruments and Methods in Physics Research Section A, 829, 24-29(2016).

    [5] Federici J F, Schulkin B, Huang F et al. THz imaging and sensing for security applications: explosives, weapons and drugs[J]. Semiconductor Science and Technology, 20, S266-S280(2005).

    [6] Ferguson B, Zhang X C, Zhang X C. Materials for terahertz science and technology[J]. Nature Materials, 1, 26-33(2002).

    [7] Fu Z L, Li R Z, Li H Y et al. Progress in biomedical imaging based on terahertz quantum cascade lasers[J]. Chinese Journal of Lasers, 47, 0207014(2020).

    [8] Feng H, Bu W H, Wang W J et al. Passive terahertz imaging system for fast scanning of human body by a single detector[J]. Acta Optica Sinica, 40, 0711002(2020).

    [9] Wang Y Y, Jiang B Z, Xu D G et al. Continuous terahertz wave biological tissue imaging technology based on focal plane array[J]. Acta Optica Sinica, 41, 0711001(2021).

    [10] Kim M, Pallecchi E, Ge R J et al. Analogue switches made from boron nitride monolayers for application in 5G and terahertz communication systems[J]. Nature Electronics, 3, 479-485(2020).

    [11] Yang Y H, Yamagami Y, Yu X B et al. Terahertz topological photonics for on-chip communication[J]. Nature Photonics, 14, 446-451(2020).

    [12] Tekbıyık K, Ekti A R, Kurt G K et al. Terahertz band communication systems: challenges, novelties and standardization efforts[J]. Physical Communication, 35, 100700(2019).

    [13] Grange T, Stark D, Scalari G et al. Room temperature operation of n-type Ge/SiGe terahertz quantum cascade lasers predicted by non-equilibrium Green’s functions[J]. Applied Physics Letters, 114, 111102(2019).

    [14] Ponnampalam L, Fice M J, Pozzi F et al. Monolithically integrated photonic heterodyne system[J]. Journal of Lightwave Technology, 29, 2229-2234(2011).

    [15] Kawase K, Shikata J I, Ito H. Terahertz wave parametric source[J]. Journal of Physics D, 35, R1-R14(2002).

    [16] Taniuchi T, Okada S, Nakanishi H. Widely tunable terahertz-wave generation in an organic crystal and its spectroscopic application[J]. Journal of Applied Physics, 95, 5984-5988(2004).

    [17] Kampfrath T, Battiato M, Maldonado P et al. Terahertz spin current pulses controlled by magnetic heterostructures[J]. Nature Nanotechnology, 8, 256-260(2013).

    [18] Seifert T, Jaiswal S, Martens U et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation[J]. Nature Photonics, 10, 483-488(2016).

    [19] Tong M Y, Hu Y Z, Wang Z Y et al. Enhanced terahertz radiation by efficient spin-to-charge conversion in rashba-mediated Dirac surface states[J]. Nano Letters, 21, 60-67(2021).

    [20] Tong M Y, Hu Y Z, Wang Z Y et al. Helicity-dependent THz emission induced by ultrafast spin photocurrent in nodal-line semimetal candidate Mg3Bi2[J]. Opto-Electronic Advances, 3, 20002301-20002315(2020).

    [21] Maestrini A, Thomas B, Wang H et al. Schottky diode-based terahertz frequency multipliers and mixers[J]. Comptes Rendus Physique, 11, 480-495(2010).

    [22] Saito K, Tanabe T, Oyama Y. Elliptically polarized THz-wave generation from GaP-THz planar waveguide via collinear phase-matched difference frequency mixing[J]. Optics Express, 20, 26082-26088(2012).

    [23] Ravi K, Schimpf D N, Kärtner F X. Pulse sequences for efficient multi-cycle terahertz generation in periodically poled lithium niobate[J]. Optics Express, 24, 25582-25607(2016).

    [24] Jundt D H. Temperature-dependent Sellmeier equation for the index of refraction, ne,in congruent lithium niobate[J]. Optics Letters, 22, 1553-1555(1997).

    [25] Pálfalvi L, Hebling J, Kuhl J et al. Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range[J]. Journal of Applied Physics, 97, 123505(2005).

    [26] Sussman S S[D]. Tunable light scattering from transverse optical modes in lithium niobate(1970).

    [27] Davies C L, Patel J B, Xia C Q et al. Temperature-dependent refractive index of quartz at terahertz frequencies[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 39, 1236-1248(2018).

    [28] Saito K, Tanabe T, Oyama Y. Design of a GaP/Si composite waveguide for CW terahertz wave generation via difference frequency mixing[J]. Applied Optics, 53, 3587-3592(2014).

    [29] Li Z Y, Sun X Q, Zhang H T et al. High-efficiency terahertz wave generation in aperiodically poled lithium niobate by cascaded difference frequency generation[J]. Journal of the Optical Society of America B, 37, 2416-2422(2020).

    [30] Zhong K, Yao J Q, Xu D G et al. Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO[J]. Optics Communications, 283, 3520-3524(2010).

    [31] L’huillier J A, Torosyan G, Theuer M et al. Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate: experiments[J]. Applied Physics B, 86, 197-208(2007).

    [32] Avetisyan Y, Sasaki Y, Ito H. Analysis of THz-wave surface-emitted difference frequency generation in periodically poled lithium niobate waveguide[J]. Applied Physics B, 73, 511-514(2001).

    Tools

    Get Citation

    Copy Citation Text

    Zhongyang Li, Qianze Yan, Gege Zhang, Jia Zhao, binzhe Jiao, Xiangqian Sun, Pibin Bing, Sheng Yuan, Jianquan Yao. High-Frequency Terahertz Wave Generation with Cascaded Difference Frequency Generation at Polariton Resonance[J]. Chinese Journal of Lasers, 2022, 49(7): 0714002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: terahertz technology

    Received: Jun. 28, 2021

    Accepted: Aug. 5, 2021

    Published Online: Mar. 2, 2022

    The Author Email: Zhongyang Li (thzwave@163.com)

    DOI:10.3788/CJL202249.0714002

    Topics