Laser & Optoelectronics Progress, Volume. 59, Issue 16, 1610013(2022)

Security Inspection Image Object Detection Method with Attention Mechanism and Multilayer Feature Fusion Strategy

Hong Zhang and Sicong Zhang*
Author Affiliations
  • School of Automation, Xi’an University of Posts & Telecommunications, Xi’an 710100, Shaanxi , China
  • show less
    Figures & Tables(16)
    Structure of the YOLOv5s network
    Structure of the SE module
    Structure of the SA module
    Structure of the YOLOv5s-AFA network
    Structure of the ERF module
    Structure of the iECA module
    Attention structure of the ASFF module
    X-ray security image dataset. (a)‒(f) Image 1‒ image 6
    Label distribution of training set. (a) Center point distribution; (b) width and height distribution
    Loss and mAP of five networks. (a) Loss curve; (b) mAP curve
    Comparison of detection results for X-ray images. (a) YOLOv4; (b) PP-YOLOv2; (c) YOLOv5x; (d) YOLOv5s; (e) YOLOv5s-AFA
    • Table 1. Number of convolution kernels of Backbone in different YOLOv5 networks

      View table

      Table 1. Number of convolution kernels of Backbone in different YOLOv5 networks

      NetworkYOLOv5sYOLOv5mYOLOv5lYOLOv5x
      Model size /MB2784192367
      Focus32486480
      CBL-16496128160
      CBL-2128192256320
      CBL-3256384512640
      CBL-451276810241208
    • Table 2. Comparison results of SA modules

      View table

      Table 2. Comparison results of SA modules

      ModulemAP /%(mAP,0.50∶0.95)/%NP
      YOLOv5s87.255.90
      YOLOv5s+SA88.756.32048
      YOLOv5s+SAd88.956.4940
      YOLOv5s +E-SAd90.457.617832
    • Table 3. Comparison results of channel attention module

      View table

      Table 3. Comparison results of channel attention module

      ModulemAP /%(mAP,0.5∶0.95)/%NP
      YOLOv5s87.255.90
      YOLOv5s+SE88.156.343008
      YOLOv5s+ECA89.458.722868
      YOLOv5s+iECA(k=3)91.559.525668
      YOLOv5s+iECA(k=5)91.459.232786
    • Table 4. Comparison results of ablation experiments of each module

      View table

      Table 4. Comparison results of ablation experiments of each module

      No.ModulesASFFE-SAdiECAmAP /%
      1YOLOv5s×××87.2
      2YOLOv5s+E-SAd+iECA×92.5
      3YOLOv5s+ASFF××91.3
      4YOLOv5s+ASFF+E-SAd×92.2
      5YOLOv5s+ASFF+iECA×92.7
      6YOLOv5s+ASFF+E-SAd+iECA94.5
    • Table 5. Detection results of different networks

      View table

      Table 5. Detection results of different networks

      NetworkBackbonePRmAP /%Module size /m
      Faster RCNNVGG0.8740.75986.8160
      RetinaNetResNet+FPN0.9040.79090.0140
      YOLOv4CSP DarkNet530.9200.81291.7240
      PP-YOLOv2ResNet50-vd0.9490.86593.483
      YOLOv5sCSP DarkNet0.8900.78287.222
      YOLOv5xCSP DarkNet0.9680.88995.6320
      B-YOLODark Net+CSP0.9070.80090.439
      YOLOv5+GhostBottleneck0.8960.79588.224
      YOLOv5s-AFACSP DarkNet0.9670.87194.526
    Tools

    Get Citation

    Copy Citation Text

    Hong Zhang, Sicong Zhang. Security Inspection Image Object Detection Method with Attention Mechanism and Multilayer Feature Fusion Strategy[J]. Laser & Optoelectronics Progress, 2022, 59(16): 1610013

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jul. 22, 2021

    Accepted: Sep. 24, 2021

    Published Online: Jul. 22, 2022

    The Author Email: Sicong Zhang (1622065516@qq.com)

    DOI:10.3788/LOP202259.1610013

    Topics