Laser Technology, Volume. 46, Issue 6, 808(2022)

False label detection in hyperspectral image based on low rank sparse and improved SAM

LIU Xuan1 and QU Shenming1,2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(26)

    [1] [1] ZHANG L, WEI W, ZHANG Y N, et al. Cluster sparsity field: An internal hyperspectral imagery prior for reconstruction[J]. International Journal of Computer Vision, 2018, 126(8): 797-821.

    [2] [2] LI Sh T, HAO Q N, GAO G H, et al. The effect of ground truth on performance evaluation of hyperspectral image classification[J]. IEEE Transactions on Geoence & Remote Sensing, 2018, 56(12): 7195-7206.

    [3] [3] PARK B, LU R F. Hyperspectral imaging technology in food and agriculture[M]. New York,USA: Springer, 2015: 305-331.

    [4] [4] RUITENBEEK F, DEBBA P, MEER F D, et al. Mapping white micas and their absorption wavelengths using hyperspectral band ratios[J]. Remote Sensing of Environment, 2006, 102(3/4):211-222.

    [5] [5] HU Y F, ZHANG Q L, ZHANG Y Z, et al. A deep convolution neural network method for land cover mapping: A case study of Qinhuangdao, China[J]. Remote Sensing, 2018, 10(12):2053.

    [6] [6] GUAN Sh H, YANG G, LI H, et al. Hyperspectral image classification based on 3-D convolutional recurrent neural network[J]. Laser Technology, 2020, 44(4): 485-491(in Chinese).

    [7] [7] ZHANG X G, GAO Z Y, JIAO L C, et al. Multifeature hyperspectral image classification with local and nonlocal spatial information via markov random field in semantic space[J]. IEEE Transactions on Geoence & Remote Sensing, 2018, 56(3): 1409-1424.

    [8] [8] FANG L Y, HE N J, LI Sh T, et al. A new spatial-spectral feature extraction method for hyperspectral images using local covariance matrix representation[J]. IEEE Transactions on Geoence & Remote Sensing, 2018, 56(6): 3534-3546.

    [9] [9] LU Zh W, FU Zh Y, XIANG T, et al. Learning from weak and noisy labels for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(3): 486-500.

    [10] [10] FOODY G M. The effect of mis-labeled training data on the accuracy of supervised image classification by SVM[C]// 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). New York, USA: IEEE, 2015: 4987-4990.

    [11] [11] KANG X D, DUAN P H, XIANG X L, et al. Detection and correction of mislabeled training samples for hyperspectral image classification[J]. IEEE Transactions on Geoence & Remote Sensing, 2018, 56(10): 5673-5686.

    [12] [12] TU B, ZHOU Ch L, KUANG W L, et al. Hyperspectral imagery noisy label detection by spectral angle local outlier factor[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(9): 1417-1421.

    [13] [13] ALEX R, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191):1492-1496.

    [14] [14] TU B, ZHANG X F, KANG X D, et al. Density peak-based noisy label detection for hyperspectral image classification[J]. IEEE Transactions on Geoence & Remote Sensing, 2019, 57(3): 1573-1584.

    [15] [15] TU B, ZHANG X F, KANG X D, et al. Spatial density peak clustering for hyperspectral image classification with noisy labels[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7): 5085-5097.

    [16] [16] TU B, ZHANG Ch L, PENG J, et al. Kernel entropy component analysis-based robust hyperspectral image supervised classification[J]. Remote Sensing, 2019, 11(23): 2823.

    [17] [17] ZOU Zh X, SHI Zh W. Quadratic constrained energy minimization for hyperspectral target detection[C]//2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). New York, USA: IEEE, 2015: 4979-4982.

    [18] [18] ZHANG Y F, XIE B B, SUN J, et al. A hybrid sparsity and constrained energy minimization detector for hyperspectral images[C]//2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). New York, USA: IEEE, 2017: 1137-1140.

    [19] [19] TU B, ZHOU Ch L, LIAO X L, et al. Hierarchical structure-based noisy labels detection for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 2183-2199.

    [20] [20] KIM S J, KOH K, LUSTIG M, et al. An interior-point method for large-scale & 1-regularized least squares[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 606-617.

    [21] [21] BIOUCAS-DIAS J M, NASCIMENTO J M. Hyperspectral subspace identification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(8): 2435-2445.

    [22] [22] KRUSE F A, LEFKOFF A B, BOARDMAN J W, et al. The spectral image processing system (SIPS): Software for integrated analysis of AVIRIS data[J]. Remote Sensing of Environment, 1993, 44(2/3): 145-163.

    [23] [23] CUI M S, PRASAD S. Class-dependent sparse representation classifier for robust hyperspectral image classification[J]. IEEE Transactions on Geoscience & Remote Sensing, 2015, 53(5): 2683-2695.

    [24] [24] SU H J, SHENG Y H. Orthogonal projection divergence-based hyperspectral band selection[J]. Spectroscopy and Spectral Analysis, 2011, 31(5): 1309-1313(in Chinese).

    [25] [25] TU B, YANG X C, LI N Y, et al. Hyperspectral image classification via superpixel correlation coefficient representation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 4113-4127.

    [26] [26] MELGANI F, BRUZZONE L. Classification of hyperspectral remote sensing images with support vector machines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8): 1778-1790.

    Tools

    Get Citation

    Copy Citation Text

    LIU Xuan, QU Shenming. False label detection in hyperspectral image based on low rank sparse and improved SAM[J]. Laser Technology, 2022, 46(6): 808

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 16, 2021

    Accepted: --

    Published Online: Feb. 4, 2023

    The Author Email: QU Shenming (qsm@vip.henu.edu.cn)

    DOI:10-7510/jgjs-issn-1001-3806-2022-06-016

    Topics