Optics and Precision Engineering, Volume. 31, Issue 24, 3570(2023)
Wind-induced vibration piezoelectric energy harvester with a deformable airfoil-shape blunt body
[1] SHARMA S, KIRAN R, AZAD P et al. A review of piezoelectric energy harvesting tiles: available designs and future perspective[J]. Energy Conversion and Management, 254, 115272(2022).
[2] MUSCAT A, BHATTACHARYA S, ZHU Y. Electromagnetic vibrational energy harvesters: a review[J]. Sensors, 22, 5555(2022).
[3] LIU H, FU H, SUN L et al. Hybrid energy harvesting technology: from materials, structural design, system integration to applications[J]. Renewable and Sustainable Energy Reviews, 137, 110473(2021).
[4] ZHANG C G, LIU Y B, ZHANG B F et al. Harvesting wind energy by a triboelectric nanogenerator for an intelligent high-speed train system[J]. ACS Energy Letters, 1490-1499(2021).
[5] [5] 阚君武, 富佳伟, 王淑云, 等. 涡激振动式微型流体俘能器的研究现状与展望[J]. 光学 精密工程, 2017, 25(6): 1502-1512. doi: 10.3788/ope.20172506.1502KANJ W, FUJ W, WANGS Y, et al. Research status and prospect of vortex-induced vibration micro-fluid energy harvester[J]. Opt. Precision Eng., 2017, 25(6): 1502-1512.(in Chinese). doi: 10.3788/ope.20172506.1502
[6] ZHANG L, ZHANG F, QIN Z et al. Piezoelectric energy harvester for rolling bearings with capability of self-powered condition monitoring[J]. Energy, 238, 121770(2022).
[7] [7] 王朝辉, 贾小东, 王帅, 等. 基于应用环境的路用压电俘能单元尺寸优化与性能评价[J]. 中国公路学报, 2022, 35(7): 100-112. doi: 10.3969/j.issn.1001-7372.2022.07.008WANGC H, JIAX D, WANGS, et al. Size optimization and performance evaluation of road piezoelectric energy harvesting unit based on application environment[J]. China Journal of Highway and Transport, 2022, 35(7): 100-112.(in Chinese). doi: 10.3969/j.issn.1001-7372.2022.07.008
[8] CHEN Y, YANG Z C, ZHOU S X. Wide bandwidth wind-induced vibration energy harvester with an angle section head[J]. International Journal of Applied Mechanics, 14, 2250021(2022).
[9] ZHANG Z, CHAI J, WU Y et al. A rotational energy harvester utilizing an asymmetrically deformed piezoelectric transducer subjected only to unidirectional compressive stress[J]. Energy Reports, 9, 657-668(2023).
[10] [10] 阚君武, 王凯, 孟凡许, 等. 换向激励式压电振动俘能器[J]. 光学 精密工程, 2023, 31(3): 371-379. doi: 10.37188/OPE.20233103.0371KANJ W, WANGK, MENGF X, et al. Piezoelectric vibration harvester with excitation direction conversion[J]. Opt. Precision Eng., 2023, 31(3): 371-379.(in Chinese). doi: 10.37188/OPE.20233103.0371
[11] [11] 王水田. 卡门漩涡引起的海洋建筑物的振动及其防止(上)[J]. 水道港口, 1983(4): 47-54.WANGS T. Vibration of marine structures caused by the Karman vortex and its prevention (Part 1)[J]. Journal of Waterway and Harbor, 1983(4): 47-54. (in Chinese)
[12] [12] 王淑云, 严梦加, 阚君武, 等. 间接激励式压电风力俘能器[J]. 光学 精密工程, 2019, 27(5): 1121-1127. doi: 10.3788/ope.20192705.1121WANGS Y, YANM J, KANJ W, et al. Study of piezoelectric wind energy harvester with indirect excitation[J]. Opt. Precision Eng., 2019, 27(5): 1121-1127.(in Chinese). doi: 10.3788/ope.20192705.1121
[13] LIU J J, CHEN Y J, XIA W et al. An innovative V-shaped piezoelectric energy harvester for wind energy based on the fully fluid-solid-electric coupling[J]. Journal of Renewable and Sustainable Energy, 13(2021).
[14] [14] 侯成伟, 单小彪, 宋汝君, 等. 风向自适应型涡激振动压电俘能器的试验研究[J]. 机械工程学报, 2022, 58(20): 120-127. doi: 10.3901/jme.2022.20.120HOUC W, SHANX B, SONGR J, et al. Experimental study of orientation adaptive piezoelectric energy harvester based on vortex induced vibration[J]. Journal of Mechanical Engineering, 2022, 58(20): 120-127.(in Chinese). doi: 10.3901/jme.2022.20.120
[15] HU G, WANG J, TANG L. A comb-like beam based piezoelectric system for galloping energy harvesting[J]. Mechanical Systems and Signal Processing, 150, 107301(2021).
[16] LIAO W, WEN Y, KAN J et al. A joint-nested structure piezoelectric energy harvester for high-performance wind-induced vibration energy harvesting[J]. International Journal of Mechanical Sciences, 227, 107443(2022).
[17] KAN J, WANG J, MENG F et al. A downwind-vibrating piezoelectric energy harvester under the disturbance of a downstream baffle[J]. Energy, 262, 125429(2023).
[18] WANG J, GU S, ZHANG C et al. Hybrid wind energy scavenging by coupling vortex-induced vibrations and galloping[J]. Energy Conversion and Management, 213, 112835(2020).
[19] WANG J, SUN S, TANG L et al. On the use of metasurface for Vortex-Induced vibration suppression or energy harvesting[J]. Energy Conversion and Management, 235, 113991(2021).
[20] ZHOU Z, QIN W, ZHU P et al. Scavenging wind energy by a Y-shaped bi-stable energy harvester with curved wings[J]. Energy, 153, 400-412(2018).
[21] SUN W, SEOK J. A novel self-tuning wind energy harvester with a slidable bluff body using vortex-induced vibration[J]. Energy Conversion and Management, 205, 112472(2020).
[22] ZHANG X F, LIN X J, YANG C H et al. Effects of radial stress on piezoelectric ceramic tubes and transducers[J]. The Journal of the Acoustical Society of America, 151, 434-442(2022).
[23] LIU F R, ZOU H X, ZHANG W M et al. Y-type three-blade bluff body for wind energy harvesting[J]. Applied Physics Letters, 112, 233903(2018).
[24] [24] 杜小振, P.A.MBANGO-NGOMA, 常恒,等. 流致涡激振动压电发电风能采集技术模拟研究[J]. 振动与冲击, 2022, 41(23): 168-174.DUX Z, P. A. M N, CHANGH, et al. Wind energy collection technology simulation with flow-induced VIV piezoelectric film for power generation[J]. Journal of Vibration and Shock, 2022, 41(23): 168-174. (in Chinese)
[25] LIAO W L, HUANG Z J, SUN H et al. Numerical investigation of cylinder vortex-induced vibration with downstream plate for vibration suppression and energy harvesting[J]. Energy, 281, 128264(2023).
Get Citation
Copy Citation Text
Zhonghua ZHANG, Zhe LI, Fanxu MENG, Shuyun WANG, He LI, Junwu KAN. Wind-induced vibration piezoelectric energy harvester with a deformable airfoil-shape blunt body[J]. Optics and Precision Engineering, 2023, 31(24): 3570
Category:
Received: Jun. 22, 2023
Accepted: --
Published Online: Jan. 5, 2024
The Author Email: Junwu KAN (jutkjw@163. com)