Journal of Inorganic Materials, Volume. 34, Issue 2, 137(2019)
Photovoltaic Performance of Ag2Se Quantum Dots Co-sensitized Solid-state Dye-sensitized Solar Cells
[1] TANG Y Y, WU W J, XIE Y S. Porphyrin cosensitization for a photovoltaic efficiency of 11.5%: a record for non-ruthenium solar cells based on iodine electrolyte[D]. J. Am. Chem. Soc., 137, 14055-14058(2015).
[2] GAO P, MATHEW S, YELLA A. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers[D]. Nat. Chem., 6, 242-247(2014).
[3] ARAKAWA H, OZAWA H, YU O. Dependence of the efficiency improvement of black-dye based dye-sensitized solar cells on alkyl chain length of quaternary ammonium cations in electrolyte solutions[D]. Chem. Phys. Chem., 15, 1201-1206(2014).
[4] AOYAMA Y, KAKIAGE K, YANO T. Fabrication of a high-performance dye-sensitized solar cell with 12.8% conversion efficiency using organic silyl-anchor dyes[D]. Chem. Commun., 51, 6315-6317(2015).
[5] PENG X G, YU W W. Formation of high quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers[D]. Angew. Chem. Int. Ed., 41, 2368-2371(2002).
[6] NAG A, SANTRA P K, SARMA D D. Origin of the enhanced photoluminescence from semiconductor CdSeS nanocrystals.[D]. J. Phys. Chem. Lett., 1, 2149-2153(2010).
[7] KIM H, SEOL M, TAK Y. Novel nanowire array based highly efficient quantum dot sensitized solar cell[D]. Chem. Commun., 46, 5521-5523(2010).
[8] BEARD M C, ELLINGSON R J, JOHNSON J C. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots.[D]. Nano Lett., 5, 865-871(2005).
[9] AGRANOVICH V M, KLIMOV V I, SCHALLER R D. High-efficiency carrier multiplication through direct photogeneration of multi-excitons
[10] DU J, DU Z, HU J S. Zn-Cu-In-Se quantum dot solar cells with a certified power conversion efficiency of 11.6%.[D]. J. Am. Chem. Soc., 138, 4201-4209(2016).
[11] GUAN D, JI G, LIU Z. Ag2S quantum dots and N3 dye co-sensitized TiO2, nanotube arrays for a solar cell.[D]. Appl. Surf. Sci., 282, 695-699(2013).
[12] LIU Y, WANG J. Co-sensitization of TiO2, by PbS quantum dots and dye N719 in dye-sensitized solar cells[D]. Thin Solid Films., 518, E54-E56(2010).
[13] GAO J, YANG Y, ZHANG Z. Black phosphorus based photocathodes in wide band bifacial dye-sensitized solar cells[D]. Adv. Mater., 28, 8937-8944(2016).
[14] GAO J, GUO X Y, ZHANG Z. Highly efficient interfacial layer using SILAR derived Ag2S quantum dots for solid-state bifacial dye-sensitized solar[D]. Mater. Today Energy, 5, 320-330(2017).
[15] GIMENEZ S, GOMEZ R, LANA-VILLARREAL T. Determination of limiting factors of photovoltaic efficiency in quantum dot sensitized solar cells: correlation between cell performance and structural properties[D]. J. Appl. Phys., 108(2010).
[16] CUI Y, SCHOEN D T, XIE C. Electrical switching and phase transformation in silver selenide nanowires[D]. J. Am. Chem. Soc., 129, 4116-4117(2007).
[17] BRAGA D, SAHU A, WASER O. Solid-phase flexibility in Ag2Se semiconductor nanocrystals.[D]. Nano Lett., 14, 115-121(2014).
[18] JIANG P, ZHANG Z L, ZHU C N. Ag2Se quantum dots with tunable emission in the second near-infrared window[D]. ACS Appl. Mater. Interfaces, 5, 1186-1189(2013).
[19] GAO J, YANG Y, ZHANG Z. Highly efficient Ag2Se quantum dots blocking layer for solid-state dye-sensitized solar cells: size effects on device performances.[D]. Mater. Today Energy, 7, 27-36(2018).
[20] YANG Y, YI P, ZHOU C. Magnetic field processed solid- state dye-sensitized solar cells with nickel oxide modified agarose electrolyte[D]. J. Power Sources, 243, 919-924(2013).
[21] GAO J, YANG Y, ZHANG Z. Metal-organic materials as efficient additives in polymer electrolytes for quasi-solid-state dye-sensitized solar cells[D]. J. Alloy. Compd., 726, 1286-1294(2017).
[22] DENG D, TIAN Q, ZHANG Z. Facile synthesis of Ag2Se quantum dots and their application in dye/Ag2Se co-sensitized solar cells[D]. J. Mater. Sci.,, 52, 12131-12140(2017).
[23] CUI R, GU Y P, ZHANG Z L. Ultrasmall near-infrared Ag2Se quantum dots with tunable fluorescence for
[24] GROZDANOV I, NAJDOSKI M, PEJOVA B. Chemical bath deposition of nanocrystalline (111) textured Ag2Se thin films[D]. Mater. Lett., 43, 269-273(2000).
[25] PHILIP S. Synthesis of Ag2S and Ag2Se nanoparticles in self assembled block copolymer micelles and nano-arrays fabrication[D]. Mater Lett., 63, 773-776(2009).
[26] MOLOTO M J, SIBIYA P N. Effect of precursor concentration and pH on the shape and size of starch capped silver selenide (Ag2Se) nanoparticles[D]. Chalcogenide Lett., 11, 577-588(2014).
[27] ELOUATIK S, GOMEZ M A, LEE K E. Further understanding of the adsorption mechanism of N719 sensitizer on anatase TiO2 films for DSSC applications using vibrational spectroscopy and confocal Raman imaging[D]. Langmuir, 26, 9575-9583(2010).
[28] HUANG Q, LUO J, WEI H. Highly efficient core-shell CuInS-Mn doped CdS quantum dot sensitized solar cells[D]. Chem. Comm., 49, 3881-3883(2013).
[29] HU X, HUANG X M, ZHANG Q X. Aqueous colloidal CuInS2 for quantum dot sensitized solar cells[D]. J. Mater. Chem., 21, 15903-15905(2011).
[30] CUI C, QIU Y W, ZHAO J H. A comparative study on the quantum-dot-sensitized, dye-sensitized and co-sensitized solar cells based on hollow spheres embedded porous TiO2 photoanodes[D]. Electrochim. Acta, 173, 551-558(2015).
[31] HE C L, LI S J, REN F M. Electrolyte for quantum dot-sensitized solar cells assessed with cyclic voltammetry[D]. Sci. China-Mater., 58, 490-495(2015).
[32] DOR S, RUHLE S, SHALOM M. Core CdS quantum dot/shell mesoporous solar cells with improved stability and efficiency using an amorphous TiO2 coating[D]. J. Phys. Chem. C, 11, 3895-3898(2009).
[33] BISQUERT J, SERO I M. Breakthroughs in the development of semiconductor-sensitized solar cells[D]. J. Phys. Chem. Lett., 1, 3046-3052(2010).
[34] LAN Z, WU W X, ZHANG S. An efficient method to prepare high-performance dye-sensitized photoelectrodes using ordered TiO2 nanotube arrays and TiO2 quantum dot blocking layers[D]. J. Phys. Chem. C., 20, 2643-2650(2016).
[35] LI J, LI Z, WANG S. Great improvement of photoelectric property from co-sensitization of TiO2 electrodes with CdS quantum dots and dye N719 in dye-sensitized solar cells[D]. Mater. Res. Bull., 48, 2566-2570(2013).
[36] WU J H, XU B, ZHANG X K. The influence of blocking layer on the photovoltaic properties of dye-sensitized solar cells[D]. Journal of Function Materials, 39, 1703-1709(2008).
[37] BAWENDI M G, BIAGINI P, LELII C. Enhanced photovoltaic performance with co-sensitization of quantum dots and an organic dye in dye-sensitized solar cells[D]. J. Mater. Chem. A, 2, 18375-18382(2014).
[38] GAO J, YANG Y, ZHANG Z. Bifacial quasi-solid-state dye-sensitized solar cells with poly (vinyl pyrrolidone)/polyaniline transparent counter electrode[D]. Nano Energy, 26, 123-130(2016).
[39] ELBOHY H, POUDEL P, THAPA A. Vanadium oxide as new charge recombination blocking layer for high efficiency dye-sensitizedsolar cells[D]. Nano Energy, 13, 368-375(2015).
[40] WANG W, YANG Y. Effects of incorporating PbS quantum dots in perovskite solar cells based on CH3NH3PbI3[D]. J. Power Sources, 293, 577-584(2015).
[41] FRANK A J, LAGEMAAT J V D. Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: transient photocurrent and random-walk modeling studies[D]. J. Phys. Chem. B, 105, 11194-11205(2001).
[42] OEKERMANN T, YOSHIDA T, ZHANG D. Electron transport and back reaction in nanocrystalline TiO2 films prepared by hydrothermal crystallization[D]. J. Phys. Chem. B, 108, 2227-2235(2004).
[43] MIEDANER A, NEALE N R, ZHU K. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays[D]. Nano Lett., 7, 69-74(2007).
Get Citation
Copy Citation Text
Ying YANG, De-Qun PAN, Zheng ZHANG, Tian CHEN, Xiao-Min HAN, Li-Song ZHANG, Xue-Yi GUO, [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Photovoltaic Performance of Ag2Se Quantum Dots Co-sensitized Solid-state Dye-sensitized Solar Cells[J]. Journal of Inorganic Materials, 2019, 34(2): 137
Category: Research Articles
Received: May. 17, 2018
Accepted: --
Published Online: Sep. 24, 2021
The Author Email: