Infrared and Laser Engineering, Volume. 51, Issue 5, 20210326(2022)

Radiation effect of 850 nm vertical-cavity surface-emitting laser

Jiawei Chen1,2, Yudong Li1, Liya Ma1, Yu Li3, and Qi Guo1
Author Affiliations
  • 1Key Laboratory of Functional Materials and Device for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • show less
    References(15)

    [1] Tong H X, Tong C Z, Wang Z Y, et al. Advances in the technology of 850 nm high-speed vertical cavity surface emitting lasers (Invited)[J]. Infrared and Laser Engineering, 49, 20201077(2020).

    [2] Shi J J, Qin L, Ning Y Q, et al. 850 nm vertical cavity surface-emitting laser arrays[J]. Optics and Precision Engineering, 20, 17-23(2012).

    [3] Liu X, Xue Y, Xu H C. Design and test of 4.25 Gbps optical transceiver[J]. Chinese Optics, 5, 77-82(2012).

    [4] Srour R J, Palko J W. Displacement damage effects in irradiated semiconductor devices[J]. IEEE Trans Nucl Sci, 60, 1740-1766(2013).

    [5] Feng J, Li Y D, Wen L, et al. Degradation mechanism of star sensor performance caused by radiation damage of CMOS image sensor[J]. Infrared and Laser Engineering, 49, 20190555(2020).

    [6] Xu H W, Ning Y Q, Zeng Y G, et al. Design and epitaxial growth of quantum-well for 852 nm laser diode[J]. Optics and Precision Engineering, 21, 590-597(2013).

    [7] Wang Q, Liu Yun, Wang L J. Design of In P-based quantum cascade laser with high power and short wavelength[J]. Chinese Optics, 5, 83-91(2012).

    [8] Taylor E W, Paxton A H, Schone H, et al. In vacuo responses of an AlGaAs vertical cavity surface emitting laser irradiated by 4.5 MeV protons[J]. IEEE Trans Nucl Sci, 45, 1514-1517(1998).

    [9] Boutillier M, Gauthier-Lafaye, Bonnefont O S, et al. Electron irradiation effects on Al-free laser diodes emitting at 852 nm[J]. IEEE Trans Nucl Sci, 54, 1110-1114(2007).

    [10] Huang S Y, Liu M B, Xiao Z G, et al. Study on displacement damage effects of laser diode[J]. Semiconductor Optoelectronics, 32, 195-199(2011).

    [11] Lei F, Truscott P, RDyer C S, et al. Mulassis: A Geant4-based multilayered shielding simulation tool[J]. IEEE Trans Nucl Sci, 49, 2788-2793(2002).

    [12] Johnston A H. Radiation effects in optoelectronic devices[J]. IEEE Trans Nucl Sci, 60, 2054-2073(2013).

    [13] Evans B D, Hager H E, Hughlock B W. 5.5-MeV proton irradiation of a strained-quantum-well laser-diode and a multiple-quantum-well broad-band LED[J]. IEEE Trans Nucl Sci, 40, 1645-1654(1993).

    [14] Xu Z W, Qu Y, Wang Y Z, et al. Simulation analysis of high power asymmetric 980 nm broad-waveguide diode lasers[J]. Infrared and Laser Engineering, 43, 1094-1098(2014).

    [15] Kimerling L C. Recombination enhanced defect reactions[J]. Solid-state Electron, 21, 1391-1401(1978).

    Tools

    Get Citation

    Copy Citation Text

    Jiawei Chen, Yudong Li, Liya Ma, Yu Li, Qi Guo. Radiation effect of 850 nm vertical-cavity surface-emitting laser[J]. Infrared and Laser Engineering, 2022, 51(5): 20210326

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers & Laser optics

    Received: Dec. 25, 2021

    Accepted: --

    Published Online: Jun. 14, 2022

    The Author Email:

    DOI:10.3788/IRLA20210326

    Topics