Journal of Synthetic Crystals, Volume. 51, Issue 9-10, 1541(2022)

From Mineral Gems to Photoelectric Functional Crystals——A Interpretation of Mr. Jiang Minhua’s Crystal Ode

YANG Jinfeng1、*, SUN Jun2, QIN Juan2, LI Qinglian2, SHANG Jifang1, ZHANG Ling2, and XU Jingjun2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(137)

    [18] [18] HENRICI A T, JOHNSON D E. Studies of freshwater bacteria: ii. stalked bacteria, a new order of schizomycetes[J]. Journal of Bacteriology, 1935, 30(1): 61-93.

    [21] [21] BALLMAN A A. Growth of piezoelectric and ferroelectric materials by the CzochraIski technique[J]. Journal of the American Ceramic Society, 1965, 48(2): 112-113.

    [22] [22] YAMADA T, IWASAKI H, NIIZEKI N. Piezoelectric and elastic properties of LiTaO3: temperature characteristics[J]. Japanese Journal of Applied Physics, 1969, 8(9): 1127-1132.

    [23] [23] WHATMORE R W, SHORROCKS N M, O’HARA C, et al. Lithium tetraborate: a new temperature-compensated SAW substrate material[J]. Electronics Letters, 1981, 17(1): 11.

    [26] [26] PARK S E, SHROUT T R. Relaxor based ferroelectric single crystals for electro-mechanical actuators[J]. Materials Research Innovations, 1997, 1(1): 20-25.

    [27] [27] PARK S E, SHROUT T R. Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers[J]. IEEE Ultrasonics Symposium Proceedings, 1996, 2: 935-942.

    [28] [28] YEO H G, CHOI J, JIN C Z, et al. The design and optimization of a compressive-type vector sensor utilizing a PMN-28PT piezoelectric single-crystal[J]. Sensors, 2019, 19(23): 5155.

    [29] [29] LIN D B, LI Z R, LI F, et al. Characterization and piezoelectric thermal stability of PIN-PMN-PT ternary ceramics near the morphotropic phase boundary[J]. Journal of Alloys and Compounds, 2010, 489(1): 115-118.

    [31] [31] BELAN R A, TAILOR H N, LONG X F, et al. Growth and characterization of piezo-/ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3-Bi(Zn1/2Ti1/2)O3 ternary single crystals[J]. Journal of Crystal Growth, 2011, 318(1): 839-845.

    [35] [35] YU F P, YUAN D R, YIN X, et al. Czochralski growth and characterization of the piezoelectric single crystal La3Ga5.5Nb0.5O14[J]. Solid State Communications, 2009, 149(31/32): 1278-1281.

    [38] [38] ZU H F, WU H Y, WANG Y Z, et al. Properties of single crystal piezoelectric Ca3TaGa3Si2O14 and YCa4O(BO3)3 resonators at high-temperature and vacuum conditions[J]. Sensors and Actuators A: Physical, 2014, 216: 167-175.

    [41] [41] ZHANG M H, HU C P, ZHOU Z, et al. Determination of polarization states in (K, Na)NbO3 lead-free piezoelectric crystal[J]. Journal of Advanced Ceramics, 2020, 9(2): 204-209.

    [42] [42] CHEN F F, KONG L F, YU F P, et al. Investigation of the crystal growth, thickness and radial modes of α-BiB3O6 piezoelectric crystals[J]. CrystEngComm, 2017, 19(3): 546-551.

    [43] [43] SCOTT B A, INGEBRIGTSEN K A, TSENG C C. Crystal growth and properties of pyroelectric Li2GeO3[J]. Materials Research Bulletin, 1970, 5(12): 1045-1049.

    [44] [44] KUZ′MICHEVA G M, RYBAKOV V B, GAISTER A V, et al. Structure and properties of LiGaO2 crystals[J].Inorganic Materials, 2001, 37(3): 281-285.

    [47] [47] YU F P, HOU S, ZHANG S J, et al. Electro-elastic properties of YCa4O(BO3)3 piezoelectric crystals[J]. Physica Status Solidi (a), 2014, 211(3): 574-579.

    [48] [48] JIANG C, LONG Y, YU F P, et al. Single crystal growth and temperature dependent behaviors of melilite type piezoelectric crystal Ca2Al2SiO7[J]. Journal of Crystal Growth, 2018, 496/497: 57-63.

    [49] [49] ZHANG Y Y, YIN X, YU H H, et al. Growth and piezoelectric properties of melilite ABC3O7 crystals[J]. Crystal Growth & Design, 2012, 12(2): 622-628.

    [50] [50] SOULEIMAN M, BHALERAO G M, GUILLET T, et al. Hydrothermal growth of large piezoelectric single crystals of GaAsO4[J]. Journal of Crystal Growth, 2014, 397: 29-38.

    [51] [51] KREMPL P, SCHLEINZER G, WALLNFER W. Gallium phosphate, GaPO4: a new piezoelectric crystal material for high-temperature sensorics[J]. Sensors and Actuators A: Physical, 1997, 61(1/2/3): 361-363.

    [52] [52] MAIMAN T H. Stimulated optical radiation in ruby[J]. Nature, 1960, 187(4736): 493-494.

    [53] [53] DANIELMEYER H G, OSTERMAYER F W. Diode-pump-modulated Nd∶YAG laser[J]. Journal of Applied Physics, 1972, 43(6): 2911-2913.

    [57] [57] NING K J, LIU Y C, MA J, et al. Growth and characterization of large-scale Ti∶sapphire crystal using heat exchange method for ultra-fast ultra-high-power lasers[J]. CrystEngComm, 2015, 17(14): 2801-2805.

    [58] [58] MOULTON P. Ti-doped sapphire: tunable solid-state laser[J]. Optics News, 1982, 8(6): 9.

    [59] [59] MOULTON P F. Spectroscopic and laser characteristics of Ti: Al2O3[J]. Journal of the Optical Society of America B, 1986, 3(1): 125.

    [61] [61] FIELDS R A, BIRNBAUM M, FINCHER C L. Highly efficient Nd∶YVO4 diode-laser end-pumped laser[J]. Applied Physics Letters, 1987, 51(23): 1885-1886.

    [62] [62] OGINO H, YOSHIKAWA A, NIKL M, et al. Growth and scintillation properties of Pr-doped Lu3Al5O12 crystals[J]. Journal of Crystal Growth, 2006, 287(2): 335-338.

    [63] [63] PRACKA I, GIERSZ W, S'WIRKOWICZ M, et al. The Czochralski growth of SrLaGa3O7 single crystals and their optical and lasing properties[J]. Materials Science and Engineering: B, 1994, 26(2/3): 201-206.

    [64] [64] XU Y N, CHING W Y, BRICKEEN B K. Electronic structure and bonding in garnet crystals Gd3Sc2Ga3O12, Gd3Sc2Al3O12, and Gd3Ga3O12 compared to Y3Al3O12[J]. Physical Review B, 2000, 61(3): 1817-1824.

    [65] [65] LUCCA A, DEBOURG G, JACQUEMET M, et al. High-power diode-pumped Yb3+∶CaF2 femtosecond laser[J]. Optics Letters, 2004, 29(23): 2767-2769.

    [66] [66] SU L B, XU J, LI H J, et al. Codoping Na+ to modulate the spectroscopy and photoluminescence properties of Yb3+ in CaF2 laser crystal[J]. Optics Letters, 2005, 30(9): 1003-1005.

    [67] [67] RICAUD S, GEORGES P, CAMY P, et al. Diode-pumped regenerative Yb∶SrF2 amplifier[J]. Applied Physics B, 2012, 106(4): 823-827.

    [68] [68] COLUCCELLI N, GALZERANO G, TONELLI M, et al. Diode-pumped Yb3+∶KYF4 femtosecond laser[J]. Optics Letters, 2008, 33(10): 1141-1143.

    [69] [69] COLUCCELLI N, GALZERANO G, BONELLI L, et al. Diode-pumped passively mode-locked Yb∶YLF laser[J]. Optics Express, 2008, 16(5): 2922.

    [70] [70] YASUKEVICH A S, KISEL V E, KURILCHIK S V, et al. Continuous wave diode pumped Yb∶LLF and Yb∶NYF lasers[J]. Optics Communications, 2009, 282(22): 4404-4407.

    [71] [71] FALIN M L, GERASIMOV K I, KAZAKOV B N, et al. Spectrometer for optical detection of magnetic resonance: magneto-optical study of Yb3+ in BaF2 single crystal[J]. Applied Magnetic Resonance, 1999, 17(1): 103-112.

    [74] [74] HOU W T, ZHAO H Y, LI N, et al. Spectroscopic properties of Er∶Lu2O3 crystal in mid-infrared emission[J]. Optical Materials, 2019, 98: 109508.

    [75] [75] NOGINOV M A, LOUTTS G B, JONES D E, et al. Crystal growth of vanadium doped YAlO3, LaGaO3, and CaYAlO4 crystals and spectroscopic studies of vanadium valence states[J]. Journal of Applied Physics, 2001, 91(2): 569-575.

    [76] [76] LISIECKI R, SOLARZ P, DOMINIAK-DZIK G, et al. Effect of temperature on spectroscopic features relevant to laser performance of YVO4∶Tm3+, GdVO4∶Tm3+, and LuVO4∶Tm3+ crystals[J]. Optics Letters, 2010, 35(23): 3940-3942.

    [77] [77] LI W X, HAO Q, ZHAI H, et al. Diode-pumped Yb∶GSO femtosecond laser[J]. Optics Express, 2007, 15(5): 2354-2359.

    [78] [78] LIU J, WANG W W, LIU C C, et al. Efficient diode-pumped self-mode-locking Yb∶LYSO laser[J]. Laser Physics Letters, 2009: NA.

    [79] [79] TIAN W L, WANG Z H, LIU J X, et al. Dissipative soliton and synchronously dual-wavelength mode-locking Yb∶YSO lasers[J]. Optics Express, 2015, 23(7): 8731-8739.

    [80] [80] ZHENG L H, ZHAO G J, SU L B, et al. Comparison of optical properties between ytterbium-doped Lu2SiO5 (Yb∶LSO) and ytterbium-doped Lu2Si2O7(Yb∶LPS) laser crystals[J]. Journal of Alloys and Compounds, 2009, 471(1/2): 157-161.

    [81] [81] SERRES J M, MATEOS X, LOIKO P, et al. Indium-modified Yb∶KLu(WO4)2 crystal: growth, spectroscopy and laser operation[J]. Journal of Luminescence, 2017, 183: 391-400.

    [82] [82] HOLTOM G R. Mode-locked Yb∶KGW laser longitudinally pumped by polarization-coupled diode bars[J]. Optics Letters, 2006, 31(18): 2719-2721.

    [83] [83] LIU H, NEES J, MOUROU G. Diode-pumped Kerr-lens mode-locked Yb∶KY(WO4)2 laser[J]. Optics Letters, 2001, 26(21): 1723-1725.

    [84] [84] ZHANG Y, WANG G F. Optical properties of Yb3+-doped Sr3Y2(BO3)4 crystal[J]. Journal of Materials Research, 2012, 27(16): 2106-2110.

    [85] [85] LOU F, SUN S J, HE J L, et al. Direct diode-pumped 58 fs Yb∶Sr3Y2(BO3)4 laser[J]. Optical Materials, 2016, 55: 1-4.

    [86] [86] ZHANG Y, LIN Z B, ZHANG L Z, et al. Growth and optical properties of Yb3+-doped Sr3Gd2(BO3)4 crystal[J]. Optical Materials, 2007, 29(5): 543-546.

    [87] [87] ZHANG Y Y, LI J R, HU Y Y, et al. Temperature tunable lasers with disordered Nd∶ABC3O7 crystals[J]. Optics & Laser Technology, 2020, 125: 106018.

    [92] [92] HULME K F, JONES O, DAVIES P H, et al. Synthetic proustite (Ag3AsS3): a new crystal for optical mixing[J]. Applied Physics Letters, 1967, 10(4): 133-135.

    [93] [93] BARDSLEY W, DAVLES P H, HOBDEN M V, et al. Synthetic proustite (Ag3AsS3): a summary of its properties and uses[J]. Opto-electronics, 1969, 1(1): 29-31.

    [94] [94] CHEN C T, WU B C, JIANG A D, et al. A new-type ultraviolet SHG crystal—β-BaB2O4[J]. Science in China, Ser B, 1985, 28(3): 235-243.

    [95] [95] WU Y C, CHEN C T. Development of new nonlinear optical crystal LiB3O5[J]. The Review of Laser Engineering, 1991, 19(10): 941-949.

    [96] [96] YE N, TANG D. Hydrothermal growth of KBe2BO3F2 crystals[J]. Journal of Crystal Growth, 2006, 293(2): 233-235.

    [97] [97] WANG X Y, YAN X, LUO S Y, et al. Flux growth of large KBBF crystals by localized spontaneous nucleation[J]. Journal of Crystal Growth, 2011, 318(1): 610-612.

    [99] [99] RYU G, YOON C S, HAN T P J, et al. Growth and characterisation of CsLiB6O10 (CLBO) crystals[J]. Journal of Crystal Growth, 1998, 191(3): 492-500.

    [100] [100] WU Y C, SASAKI T, NAKAI S D, et al. CsB3O5: a new nonlinear optical crystal[J]. Applied Physics Letters, 1993, 62(21): 2614-2615.

    [101] [101] KRYUKOV P G, MATVEETS Y A, NIKOGOSYAN D N, et al. Generation of frequency-tunable single ultrashort light pulses in an LiIO3 crystal[J]. Soviet Journal of Quantum Electronics, 1977, 7(1): 127-128.

    [102] [102] CYRANOSKI D. Materials science: China’s crystal cache[J].Nature, 2009, 457(7232): 953-955.

    [103] [103] ANDRIYEVSKY B, PILZ T, YEON J, et al. DFT-based ab initio study of dielectric and optical properties of bulk Li2B3O4F3 and Li2B6O9F2[J]. Journal of Physics and Chemistry of Solids, 2013, 74(4): 616-623.

    [104] [104] PENG G, YE N, LIN Z S, et al. NH4Be2BO3F2 and γ-Be2BO3F: overcoming the layering habit in KBe2BO3F2 for the next-generation deep-ultraviolet nonlinear optical materials[J]. Angewandte Chemie International Edition, 2018, 57(29): 8968-8972.

    [105] [105] GUO S, LIU L J, XIA M J, et al. Be2BO3F: a phase of beryllium fluoride borate derived from KBe2BO3F2 with short UV absorption edge[J]. Inorganic Chemistry, 2016, 55(13): 6586-6591.

    [106] [106] SHI G Q, WANG Y, ZHANG F F, et al. Finding the next deep-ultraviolet nonlinear optical material: NH4B4O6F[J]. Journal of the American Chemical Society, 2017, 139(31): 10645-10648.

    [107] [107] LIU L J, ZHOU H T, HE X L, et al. Hydrothermal growth and optical properties of RbBe2BO3F2 crystals[J]. Journal of Crystal Growth, 2012, 348(1): 60-64.

    [109] [109] WANG T J, ZHANG H Z, WU F G, et al. 3-5 μm AgGaS2 optical parametric oscillator with prism cavity[J]. Laser Physics, 2009, 19(3): 377-380.

    [110] [110] RUSSELL D A, EBERT R. Efficient generation and heterodyne detection of 4.75-μm light with second-harmonic generation[J]. Applied Optics, 1993, 32(33): 6638-6644.

    [111] [111] BUDNI P A, POMERANZ L A, LEMONS M L, et al. Efficient mid-infrared laser using 1.9-μm-pumped Ho∶YAG and ZnGeP2 optical parametric oscillators[J]. Josa B, 2000, 17(5): 723-728.

    [112] [112] VODOPYANOV K L, SCHUNEMANN P G. Efficient difference-frequency generation of 7-20 μm radiation in CdGeAs2[J]. Optics Letters, 1998, 23(14): 1096-1098.

    [113] [113] ISAENKO L, YELISSEYEV A, LOBANOV S, et al. LiInSe2: a biaxial ternary chalcogenide crystal for nonlinear optical applications in the midinfrared[J]. Journal of Applied Physics, 2002, 91(12): 9475-9480.

    [115] [115] YAO J Y, MEI D J, BAI L, et al. BaGa4Se7: a new congruent-melting IR nonlinear optical material[J]. Inorganic Chemistry, 2010, 49(20): 9212-9216.

    [116] [116] ISAENKO L, YELISSEYEV A, LOBANOV S, et al. Growth and properties of LiGaX2 (X=S, Se, Te) single crystals for nonlinear optical applications in the mid-IR[J]. Crystal Research and Technology, 2003, 38(35): 379-387.

    [117] [117] DOU Y W, CHEN Y, LI Z, et al. SrCdGeS4 and SrCdGeSe4: promising infrared nonlinear optical materials with congruent-melting behavior[J]. Crystal Growth & Design, 2019, 19(2): 1206-1214.

    [119] [119] MAKER P D, TERHUNE R W. Study of optical effects due to an induced polarization third order in the electric field strength[J]. Physical Review, 1965, 137(3A): A801-A818.

    [120] [120] KAMINOW I P, JOHNSTON W D. Quantitative determination of sources of the electro-optic effect in LiNbO3 and LiTaO3[J]. Physical Review, 1967, 160(3): 519-522.

    [121] [121] PAPUCHON M. Recent progresses in electrooptic modulation and switching using LiNbO3 waveguides[J]. Frequenz, 1978, 32(3): 75-78.

    [122] [122] SASAKI H, DE LA RUE R M. Electro-optic Y-junction modulator/switch[J]. Electronics Letters, 1976, 12(18): 459.

    [127] [127] WARNER J. Simulation of a double 45°, z-cut KDP, electro-optic Q-switch by desk-top computer[J]. Optics & Laser Technology, 1971, 3(4): 215-217.

    [128] [128] ROSNER R D, TURNER E H, KAMINOW I P. Clamped electrooptic coefficients of KDP and quartz[J]. Applied Optics, 1967, 6(4): 778.

    [129] [129] GOODNO G D, GUO Z, MILLER R J D, et al. Investigation of β-BaB2O4 as a Q switch for high power applications[J]. Applied Physics Letters, 1995, 66(13): 1575-1577.

    [130] [130] LEBIUSH E, LAVI R, TZUK Y, et al. High repetition rate end-pumped electro-optic RTP Q-switch Nd∶YVO4 laser[C]. Proceedings of the Lasers and Electro-Optics Europe, Nice, France, F. IEEE Xplore, 2000.

    [131] [131] KONG H K, WANG J Y, ZHANG H J, et al. Growth, properties and application as an electrooptic Q-switch of langasite crystal[J]. Journal of Crystal Growth, 2003, 254(3/4): 360-367.

    [133] [133] ZGONIK, BERNASCONI, DUELLI, et al. Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals[J]. Physical Review B, Condensed Matter, 1994, 50(9): 5941-5949.

    [134] [134] ZGONIK M, NAKAGAWA K, GNTER P. Electro-optic and dielectric properties of photorefractive BaTiO3 and KNbO3[J]. Josa B, 1995, 12(8): 1416-1421.

    [135] [135] WANG J Y, GUAN Q C, WEI J Q, et al. Growth and characterization of cubic KTa1-xNbxO3 crystals[J]. Journal of Crystal Growth, 1992, 116(1/2): 27-36.

    [137] [137] XU F, ZHANG G, LUO M, et al. A powder method for the high-efficacy evaluation of electro-optic crystals[J]. National Science Review, 2020, 8(3): nwaa104.

    [138] [138] LIU X, TAN P, MA X, et al. Ferroelectric crystals with giant electro-optic property enabling ultracompact Q-switches[J]. Science, 2022, 376(6591): 371-377.

    [139] [139] HOFSTADTER R. Alkali halide scintillation counters[J]. Physical Review, 1948, 74(1): 100-101.

    [140] [140] NITSCHE R. Crystal growth and electro-optic effect of bismuth germanate, Bi4(GeO4)3[J]. Journal of Applied Physics, 1965, 36(8): 2358-2360.

    [145] [145] JI Z M, NI H H, YUAN L Y, et al. Investigation of optical transmittance and light response uniformity of 600-mm-long BGO crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 753: 143-148.

    [147] [147] ERIKSSON L, TOWNSEND D, ERIKSSON M, et al. Experience with scintillators for PET: towards the fifth generation of PET scanners[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 525(1/2): 242-248.

    [150] [150] MELCHER C L, SCHWEITZER J S, UTSU T, et al. Scintillation properties of GSO[J]. IEEE Transactions on Nuclear Science, 1990, 37(2): 161-164.

    [153] [153] WU Y T, KOSCHAN M, LI Q, et al. Revealing the role of calcium codoping on optical and scintillation homogeneity in Lu2SiO5: Ce single crystals[J]. Journal of Crystal Growth, 2018, 498: 362-371.

    [154] [154] DORENBOS P, DE HAAS J T M, VAN EIJK C W E, et al. Nonlinear response in the scintillation yield of Lu2SiO5∶Ce3[J]. IEEE Transactions on Nuclear Science, 1994, 41(4): 735-737.

    [157] [157] BLAHUTA S, BESSIRE A, GOURIER D, et al. Effect of the X-ray dose on the luminescence properties of Ce∶LYSO and co-doped Ca, Ce∶LYSO single crystals for scintillation applications[J]. Optical Materials, 2013, 35(10): 1865-1868.

    [158] [158] TANJI K, ISHII M, USUKI Y, et al. Crystal growth of PbWO4 by the vertical Bridgman method: effect of crucible thickness and melt composition[J]. Journal of Crystal Growth, 1999, 204(4): 505-511.

    [159] [159] ZHAO W, RISTIC G, ROWLANDS J A. X-ray imaging performance of structured cesium iodide scintillators[J]. Medical Physics, 2004, 31(9): 2594-2605.

    [160] [160] SHAH K S, GLODO J, KLUGERMAN M, et al. LaCl3∶Ce scintillator for γ-ray detection[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 505(1/2): 76-81.

    [162] [162] SHIRWADKAR U, GLODO J, VAN LOEF E V, et al. Scintillation properties of Cs2LiLaBr6 (CLLB) crystals with varying Ce3+ concentration[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 652(1): 268-270.

    [163] [163] BESSIERE A, DORENBOS P, van EIJK C W E, et al. Luminescence and scintillation properties of CS[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537(1/2): 242-246.

    [166] [166] YANG X B, LI H J, BI Q Y, et al. Growth of large-sized Ce∶Y3Al5O12 (Ce∶YAG) scintillation crystal by the temperature gradient technique (TGT)[J]. Journal of Crystal Growth, 2009, 311(14): 3692-3696.

    [167] [167] ZHONG J P, LIANG H B, SU Q, et al. Effects of annealing treatments on luminescence and scintillation properties of Ce∶Lu3Al5O12 crystal grown by Czochralski method[J]. Journal of Rare Earths, 2007, 25(5): 568-572.

    [168] [168] MENG F, KOSCHAN M, TYAGI M, et al. A novel method to create an intrinsic reflective layer on a Gd3Ga3Al2O12∶Ce scintillation crystal[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 763: 591-595.

    [169] [169] YANG F, PAN S K, DING D Z, et al. Growth and optical properties of the Ce-doped Li6Gd(BO3)3 crystal grown by the modified Bridgman method[J]. Journal of Alloys and Compounds, 2009, 484(1/2): 837-840.

    [170] [170] WU Y G, GU M, CAO E H, et al. Design of a one-dimensional photonic crystal for the modification of BaF2 scintillation spectrum[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 496(1): 129-137.

    [171] [171] COMBES C M, DORENBOS P, VAN EIJK C W E, et al. Optical and scintillation properties of LiBaF3∶Ce crystals[J]. Journal of Luminescence, 1997, 72/73/74: 753-755.

    [172] [172] SHIMAMURA K, MUJILATU N, NAKANO K, et al. Growth and characterization of Ce-doped LiCaAlF6 single crystals[J]. Journal of Crystal Growth, 1999, 197(4): 896-900.

    [177] [177] WANG W Z, MENG H, QI H Z, et al. Electronic-grade high-quality perovskite single crystals by a steady self-supply solution growth for high-performance X-ray detectors[J]. Advanced Materials, 2020, 32(33): e2001540.

    [178] [178] LI J C, DU X Y, NIU G D, et al. Rubidium doping to enhance carrier transport in CsPbBr3 single crystals for high-performance X-ray detection[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 989-996.

    [181] [181] HANY I, YANG G, PHAN Q V, et al. Thallium lead iodide (TlPbI3) single crystal inorganic perovskite: electrical and optical characterization for gamma radiation detection[J]. Materials Science in Semiconductor Processing, 2021, 121: 105392.

    [183] [183] DONNAY J, HARKER D. A new law of crystal morphology extending the law of Bravais[J]. American Mineralogist, 1937, 22: 446-467.

    [184] [184] FRANK F C. In: growth and perfection of crystals[M]. New York: John Wiley, 1958.

    [188] [188] HARTMAN P, PERDOK W G. On the relations between structure and morphology of crystals. I[J]. Acta Crystallographica, 1955, 8(1): 49-52.

    [191] [191] UELTZEN M. The Verneuil flame fusion process: substances[J]. Journal of Crystal Growth, 1993, 132(1/2): 315-328.

    [192] [192] KURLOV V N. Sapphire: properties, growth, and applications[M]//Reference Module in Materials Science and Materials Engineering. Amsterdam: Elsevier, 2016.

    [193] [193] BOONIN K, SONGPAKOB W, AMINAH N S, et al. Fabrication of ruby by flame fusion technique and their properties[J]. Materials Today: Proceedings, 2018, 5(7): 15010-15013.

    [194] [194] WONGWAN W, SANGWARANATEE N, KEAWKHAO J, et al. Fabrication of Mn2+ doped Al2O3 bulk crystal by flame fusion technique and their properties[J]. Materials Today: Proceedings, 2021, 43: 2641-2646.

    [199] [199] LABELLE H E Jr. EFG, the invention and application to sapphire growth[J]. Journal of Crystal Growth, 1980, 50(1): 8-17.

    [200] [200] BRIDGMAN P W. Thermal conductivity and thermo-electromotive force of single metal crystals[J]. Proceedings of the National Academy of Sciences of the United States of America, 1925, 11(10): 608-612.

    [201] [201] STOCKBARGER D C. The production of large single crystals of lithium fluoride[J]. Review of Scientific Instruments, 1936, 7(3): 133-136.

    [202] [202] DEMINA S E, BYSTROVA E N, POSTOLOV V S, et al. Use of numerical simulation for growing high-quality sapphire crystals by the Kyropoulos method[J]. Journal of Crystal Growth, 2008, 310(7/8/9): 1443-1447.

    [203] [203] PFANN W G. Principles of zone-melting[J]. JOM, 1952, 4(7): 747-753.

    [204] [204] ZHANG X X, FRIEDRICH S, FRIEDRICH B. Production of high purity metals: a review on zone refining process[J]. Journal of Crystallization Process and Technology, 2018, 8(1): 33-55.

    [205] [205] KECK P H, GOLAY M J E. Crystallization of silicon from a floating liquid zone[J]. Physical Review, 1953, 89(6): 1297.

    [206] [206] VIECHNICKI D, SCHMID F. Growth of large monocrystals of Al2O3 by a gradient furnace technique[J]. Journal of Crystal Growth, 1971, 11(3): 345-347.

    [207] [207] SCHMID F, KHATTAK C P. Growth of Co∶MgF2 and Ti∶Al2O3 crystals for solid state laser applications[M]//Tunable Solid State Lasers. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985: 122-128.

    [208] [208] JOYCE D B, SCHMID F. Progress in the growth of large scale Ti: sapphire crystals by the heat exchanger method (HEM) for petawatt class lasers[J]. Journal of Crystal Growth, 2010, 312(8): 1138-1141.

    Tools

    Get Citation

    Copy Citation Text

    YANG Jinfeng, SUN Jun, QIN Juan, LI Qinglian, SHANG Jifang, ZHANG Ling, XU Jingjun. From Mineral Gems to Photoelectric Functional Crystals——A Interpretation of Mr. Jiang Minhua’s Crystal Ode[J]. Journal of Synthetic Crystals, 2022, 51(9-10): 1541

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 4, 2022

    Accepted: --

    Published Online: Nov. 18, 2022

    The Author Email: YANG Jinfeng (yangjinfeng@haue.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics