Acta Optica Sinica, Volume. 40, Issue 6, 0622002(2020)

Nanostructured Antireflection Micro-Optics in the Optical Fiber Communication Band

Dun Pi1,2, Zihao Shan1,2, and Xingkun Wu1,2、*
Author Affiliations
  • 1State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
  • 2College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
  • show less
    References(18)

    [1] Dimitrios A, Paraskevas B, Dimitrios K et al. Photonic integration enabling new multiplexing concepts in optical board-to-board and rack-to-rack interconnects[J]. Proceedings of SPIE, 8991, 89910D(2014).

    [2] Wohlfeld D, Lemke F, Froening H et al. High-density active optical cable: from a new concept to a prototype[J]. Proceedings of SPIE, 7944, 79440L(2011).

    [4] Voelkel R, Gong L, Rieck J et al. Wafer-level micro-optics: trends in manufacturing, testing, packaging, and applications[J]. Proceedings of SPIE, 8557, 855702(2012).

    [5] Rossi M, Rudmann H, Marty B et al. Wafer-scale micro-optics replication technology[J]. Proceedings of SPIE, 5183, 148-154(2003).

    [6] Wilson S J, Hutley M C. The optical properties of “moth eye” antireflection surfaces[J]. Optica Acta: International Journal of Optics, 29, 993-1009(1982).

    [8] Chou S Y. Nanoimprint lithography[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 14, 4129-4133(1996).

    [10] Chiu C H, Yu P C, Kuo H C et al. Broadband and omnidirectional antireflection employing disordered GaN nanopillars[J]. Optics Express, 16, 8748-8754(2008).

    [11] Li X C, Li J S, Chen T et al. Periodically aligned Si nanopillar arrays as efficient antireflection layers for solar cell applications[J]. Nanoscale Research Letters, 5, 1721-1726(2010).

    [13] Sun C H, Jiang P, Jiang B. Broadband moth-eye antireflection coatings on silicon[J]. Applied Physics Letters, 92, 061112(2008).

    [14] Ho Y H, Liu C C, Liu S W et al. Efficiency enhancement of flexible organic light-emitting devices by using antireflection nanopillars[J]. Optics Express, 19, A295(2011).

    [15] Lin C R, Liu M C, Chiu Y C et al. Output power enhancement of white organic light-emitting diodes via a nanopatterned substrate generated by a monolayer of nanospheres[J]. Applied Physics Letters, 110, 093101(2017).

    [16] Tan G J, Lee J H, Lan Y H et al. Broadband antireflection film with moth-eye-like structure for flexible display applications[J]. Optica, 4, 678-683(2017).

    [17] Cho B J, Park J S, Hwang J M et al. Suppression of reflection peaks caused by moth-eye-type nanostructures for antireflection applications studied by using FDTD simulation[J]. Journal of Information Display, 18, 137-144(2017).

    [18] Zhu Z X. Hydrophilicity, wettability and contact angle[J]. Membrane Science and Technology, 34, 1-4(2014).

    Tools

    Get Citation

    Copy Citation Text

    Dun Pi, Zihao Shan, Xingkun Wu. Nanostructured Antireflection Micro-Optics in the Optical Fiber Communication Band[J]. Acta Optica Sinica, 2020, 40(6): 0622002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Design and Fabrication

    Received: Oct. 14, 2019

    Accepted: Dec. 2, 2019

    Published Online: Mar. 6, 2020

    The Author Email: Wu Xingkun (xingkunwu@zju.edu.cn)

    DOI:10.3788/AOS202040.0622002

    Topics