Chinese Journal of Lasers, Volume. 44, Issue 8, 802008(2017)

Influence of External Longitudinal Magnetic Field on Weld Joint Morphology and Microstructure in Laser-Metal Inert Gas Hybrid Welding

Zhang Xun, Li Ruoyang, Zhao Zeyang, Mi Gaoyang, Wang Chunming, and Hu Xiyuan
Author Affiliations
  • [in Chinese]
  • show less
    Figures & Tables(17)
    Schematic of laser-MIG hybrid welding assisted with external longitudinal magnetic field
    Schematic of microhardness test of weld joint
    Schematic of weld joint morphology
    Influence of external longitudinal magnetic field on weld joint morphology
    Influence of external longitudinal magnetic field on weld joint forming characteristics. (a) Forming coefficient; (b) reinforcement coefficient; (c) penetration ratio; (d) width waist ratio
    Microstructure of SUS316L austenitic stainless steel base metal
    XRD patterns of weld joint under different magnetic induction intensities.(a) B=0 mT; (b) B=12 mT; (c) B=22 mT
    Microstructure of top area of weld joints under different magnetic induction intensities.(a) B=0 mT; (b) B=12 mT; (c) B=22 mT
    Microstructure of middle area of weld joints under different magnetic induction intensities.(a) B=0 mT; (b) B=12 mT; (c) B=22 mT
    SEM images of HAZ of weld joints under different magnetic induction intensities.(a) B=0 mT; (b) B=12 mT; (c) B=22 mT; (d) partial enlarged view of Fig. 10(c)
    EDS analysis results. (a) Test area; (b) test point A; (c) test point B
    Microhardness distributions of weld joints under different magnetic induction intensities and illustrations show corresponding test areas. (a) Top; (b) middle; (c) bottom
    Standard deviation of microhardness distribution
    • Table 1. Chemical compositions of base metal and filler wire (mass fraction, %)

      View table

      Table 1. Chemical compositions of base metal and filler wire (mass fraction, %)

      ElementCMnSiSPCrNiMoFe
      Base metal≤0.03≤2.00≤0.75≤0.030≤0.04516.0-18.010.0-14.02.0-3.0Bal.
      Filler wire≤0.031.0-2.50.83≤0.020≤0.03018.0-20.011.0-14.02.5-3.0Bal.
    • Table 2. Parameters of laser-MIG hybrid welding assisted with external longitudinal magnetic field

      View table

      Table 2. Parameters of laser-MIG hybrid welding assisted with external longitudinal magnetic field

      Laserpower /kWCurrent /AWelding speed /(m·min-1)Focal pointdistance /mmDLA /mmB /mT
      2.01501.1020, 8, 12, 16, 22
    • Table 3. Weld joints and cross-sectional morphologies under different magnetic induction intensities

      View table

      Table 3. Weld joints and cross-sectional morphologies under different magnetic induction intensities

      B /mTWeld joint morphologyCross-sectional morphology of weld joint
      0
      8
      12
      16
      22
    • Table 4. EDS analysis results

      View table

      Table 4. EDS analysis results

      ElementPoint APoint B
      Mass fraction /%Atomic fraction /%Mass fraction /%Atomic fraction /%
      Si0.981.940.651.29
      Cr22.4424.0218.6619.95
      Mn1.221.241.761.78
      Fe64.4764.2464.8764.57
      Ni6.085.7711.5810.97
      Mo4.802.792.471.43
    Tools

    Get Citation

    Copy Citation Text

    Zhang Xun, Li Ruoyang, Zhao Zeyang, Mi Gaoyang, Wang Chunming, Hu Xiyuan. Influence of External Longitudinal Magnetic Field on Weld Joint Morphology and Microstructure in Laser-Metal Inert Gas Hybrid Welding[J]. Chinese Journal of Lasers, 2017, 44(8): 802008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: Sep. 8, 2016

    Accepted: --

    Published Online: Sep. 13, 2017

    The Author Email:

    DOI:10.3788/CJL201744.0802008

    Topics