Journal of Quantum Optics, Volume. 31, Issue 1, 10201(2025)
Development of a High-performance GHz Bandwidth Balanced Homodyne Detector
[1] [1] FERCHER A F, DREXLER W, HITZENBERGER C K, et al. Optical coherence tomography-principles and applications[J]. Reports on Progress in Physics, 2003, 66(2):239-303. DOI: 10.1088/0034-4885/66/2/204.
[2] [2] KUMAR R, BARRIOS E, MACRAE A, et al. Versatile wideband balanced detector for quantum optical homodyne tomography[J]. Optics Communications, 2012, 285(24):5259-5267. DOI: 10.1016/j.optcom.2012.07.103.
[3] [3] COOPER M, SLLER C, SMITH B J. High-stability time-domain balanced homodyne detector for ultrafast optical pulse applications[J]. Journal of Modern Optics, 2013, 60(8):611-616. DOI: 10.1364/QELS.2012.QTu3E.5.
[4] [4] LVOVSKY A I, RAYMER M G. Continuous-variable optical quantum-state tomography[J]. Rev Mod Phys, 2009, 81(1):299-332. DOI: 10.1103/RevModPhys.81.299.
[5] [5] CHI Y M, QI B, ZHU W, et al. A balanced homodyne detector for high-rate Gaussian-modulated co-herent-state quantum key distribution[J]. New Journal of Physics, 2011, 13(1):013003. DOI: 10.1088/1367-2630/13/1/013003.
[6] [6] MA X C, SUN S H, JIANG M S, et al. Enhancement of the security of a practical continuous variable quantum-key-distribution system by manipulating the intensity of the local oscillator[J]. Physical Review A, 2014, 89(3):032310. DOI: 10.1103/PhysRevA.89.032310.
[7] [7] GROSSHANS F, ASSCHE G V, WENGER J, et al. Quantum key distribution using gaussian-modulated coherent states[J]. Nature, 2003, 421(6920):238-241. DOI: 10.1038/nature01289.
[9] [9] HUANG D, LIN D K, WANG C, et al. Continuous-variable quantum key distribution with 1 Mbps secure key rate[J]. Opt Express, 2015, 23(13):17511. DOI: 10.1364/OE.23.017511.
[10] [10] ERIKSSON T A, HIRANO T, PUTTNAM B J, et al. Wavelength division multiplexing of continuous variable quantum key distribution and 18.3 Tbit/s data channels[J]. Communications Physics, 2019, 2(1):9. DOI: 10.1038/s42005-018-0105-5.
[11] [11] HUANG D, FANG J, WANG C, et al. A 300-MHz bandwidth balanced homodyne detector for continuous variable quantum key distribution[J]. Chin Phys Lett, 2013, 30(11):114209. DOI: 110.1088/0256-307X/30/11/114209.
[12] [12] TANG X, KUMAR R, REN S, et al. Performance of continuous variable quantum key distribution system at different detector bandwidth[J]. Optics Communications, 2020, 471:126034. DOI: 10.1016/j.optcom.2020.126034.
[13] [13] CHI Y M, QI B, ZHU W, et al. A balanced homodyne detector for high-rate Gaussian-modulated coherent-state quantum key distribution[J]. New Journal of Physics, 2011, 13(1):013003. DOI: 10.1088/1367-2630/13/1/013003.
[14] [14] DU S N, LI Z Y, LIU W Y, et al. High-speed time-domain balanced homodyne detector for nanosecond optical field applications[J]. J Opt Soc Amer, 2018, 35(2):481-486. DOI: 10.1364/JOSAB.35.000481.
[15] [15] YOKOYAMAl S, UKAI R, ARMSTRONG S C. Ultra-large-scale continuous-variable cluster states multiplexed in the time domain[J]. Nat Photonics, 2013, 7(12):982-986. DOI: 10.1038/nphoton.2013.287.
[16] [16] KASHIWAZAKI T, TAKANASHI N, YAMASHIMA T, et al. Continuous-wave 6-dB-squeezed light with 2.5-THz-bandwidth from single-mode PPLN waveguide[J]. APL Photonics, 2020, 5(3):036104. DOI: 10.1063/1.5142437.
[17] [17] TAKANASHI N, INOKUCHI W, SERIKAWA T, et al. Generation and measurement of a squeezed vacuum up to 100 MHz at 1550 nm with a semimonolithic optical parametric oscillator designed towards direct coupling with waveguide modules[J]. Opt Express, 2019, 27(13):18900. DOI: 10.1364/OE.27.018900.
[18] [18] YOSHINO K, AOKI T, FURUSAWA A. Generation of continuous-wave broadband entangled beams using periodically poled lithium niobate waveguides[J]. Appl Phys Lett, 2007, 90(4):041111. DOI: 10.1063/1.2437057.
[19] [19] YOSHIKAWA J, YOKOYAMA S, KAJI T, et al. Invited article: Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing[J]. APL Photonics, 2016, 1(6):060801. DOI: 10.1063/1.4962732.
[20] [20] ASAVANANT W, SHIOZAWA Y, YOKOYAMA S, et al. Generation of time-domain-multiplexed two-dimensional cluster state[J]. Science, 2019, 366(6463):373-376. DOI: 10.1364/OL.37.002367.
[21] [21] ZAVATTA A, VICIANI S, BELLINI M. Tomographic reconstruction of the single-photon fock state by high-frequency homodyne detection[J]. Phys Rev A, 2004, 70(5):053821. DOI: 10.1103/PhysRevA.70.053821.
[22] [22] SENIOR R J, MILFORD G N, JANOUSEK J, et al. Observation of a comb of optical squeezing over many gigahertz of bandwidth[J]. Opt Express, 2007, 15(9):5310-5317. DOI: 10.1364/OE.15.005310.
[23] [23] AST S, SAMBLOWSKI A, MEHMET M, et al. Continuous-wave nonclassical light with gigahertz squeezing bandwidth[J]. Opt Lett, 2012, 37(12):2367-2369. DOI: 10.1364/OL.37.002367.
[24] [24] ZHANG Z S, MOURADIAN S, WONG F N C, et al. Entanglement-enhanced sensing in a lossy and noisy environment[J]. Phys Rev Lett, 2015, 114(11):110506. DOI: 10.1103/PhysRevLett.114.110506.
[25] [25] COLANGELO G, CIURANA F M, PUENTES G, et al. Entanglement-enhanced phase estimation without prior phase information[J]. Phys Rev Lett, 2017, 118(23):233603. DOI: 10.1103/PhysRevLett.118.233603.
[26] [26] XIA Y, LI W, CLARK W, et al. Demonstration of a reconfigurable entangled radio-frequency photonic sensor network[J]. Phys Rev Lett, 2020, 124(15):150502. DOI: 10.1103/PhysRevLett.124.150502.
[27] [27] LI Z H, LIU J GUO F, et al. 20 MHz resonant photodetector for the homodyne measurement of picosecond pulsed squeezed light[J]. Optics Continuum, 2023, 2(2):490-497. DOI: 10.1364/OPTCON.481271.
[28] [28] YUEN H P, CHAN V W S. Noise in homodyne and heterodyne detection[J]. Opt Lett, 1983, 8(3):177-179. DOI: 10.1364/ol.8.000177.
[29] [29] KUMAR R, BARRIOS E, MACRAE A, et al. Versatile wideband balanced detector for quantum optical homodyne tomography[J]. Opt Commun, 2012, 285(24):5259-526. DOI: 10.1016/j.optcom.2012.07.103.
[30] [30] SERIKAWA T, FURUSAWA A. 500 MHz resonant photodetector for high-quantum-efficiency, low-noise homodyne measurement[J]. Review of Scientific Instruments, 2018, 89(6):063120. DOI: 10.1063/1.5029859.
[31] [31] ZHANG X X, ZHANG Y C, LI Z Y, et al. 1.2-GHz balanced homodyne detector for continuous-variable quantum information technology[J]. IEEE Photonics Journal, 2018, 10(5):1-10. DOI: 10.1109/JPHOT.2018.2866514.
[34] [34] JIN X L, SU J, ZHENG Y Y, et al. Balanced homodyne detection with high common mode rejection ratio based on parameter compensation of two arbitrary photodiodes[J]. Opt. Express, 2015, 23(18):23859-23866. DOI: 10.1364/OE.23.023859.
[35] [35] LANG S B, ZHANG S C, LI X L, et al. Low noise balanced homodyne detector for quantum noise measurement[J]. IEEE Access, 2022, 10:27912-27916. DOI: 10.1109/ACCESS.2022.3156094.
Get Citation
Copy Citation Text
DUAN Fangshi, LI Chao, SUO Puyi, QIN Zhongzhong. Development of a High-performance GHz Bandwidth Balanced Homodyne Detector[J]. Journal of Quantum Optics, 2025, 31(1): 10201
Category:
Received: Aug. 26, 2023
Accepted: Apr. 17, 2025
Published Online: Apr. 17, 2025
The Author Email: QIN Zhongzhong (zzqin1988@gmail.com)