Laser & Optoelectronics Progress, Volume. 62, Issue 15, 1500008(2025)
Research Progress on Micro/Nano Semiconductor Coherent Light Sources (Invited)
Fig. 1. Typical microscale optical resonators. (a) Schematic diagram of a F-P laser[28]; (b) WGM optical resonator[28]; (c) schematic diagram of a photonic crystal laser[36]; (d) plasmonic nanostructure[53]; (e) single bound state in the continuum resonator[47]; (f) twisted Moiré photonic crystal structure[62]
Fig. 2. Comparison of laser, exciton polariton laser and superradiance. (a) Traditional laser emission mechanism; (b) exciton polariton coherent emission mechanism; (c) superradiance coherent emission mechanism
Fig. 3. Perovskite based micro/nano lasers. (a) WGM laser in perovskite microdisk[91]; (b) F-P laser in perovskite nanowires[90]; (c) mie resonance laser in perovskite nanocubes[94]; (d) surface plasmon laser on perovskite nanowires[110]; (e) perovskite VCSEL[98]; (f) perovskite WGM laser formed by electron beam exposure etching[102]; (g) perovskite DFB laser[101]; (h) BIC laser based on perovskite thin film[104]
Fig. 4. Exciton polariton laser based on two-dimensional perovskite. (a) Schematic diagram of room temperature exciton polariton laser device, including CsPbCl3 nanosheets with a thickness of 373 nm embedded in DBR[114]; (b) angle resolved photoluminescence spectra measured by the device at 1.3 times the threshold power[114]; (c) schematic diagram of BIC polariton condensation in CsPbBr3-PhC lattice at room temperature, generating directed vortex beam emission[125]; (d) polarization dependent topological laser designed using SSH model[121]; (e) polariton condensate capable of continuous optical pumping in nano textured perovskite microcavities at room temperature[119]
Fig. 5. Superradiance/superfluorescence phenomena in perovskite superlattices. (a) Schematic diagram of perovskite superlattices realizing superfluorescence[128]; (b) photoluminescence spectra of a single CsPbBr3 superlattice[128]; (c) time resolved PL decay of two emission bands (blue curve, from uncoupled quantum dots; dark red curve, from coupled quantum dots) [128]; (d) superfluorescence dynamics streak camera images[128]; (e) time resolved superfluorescence emission intensity curves at different excitation powers[128]; (f) SEM images of quasi-2D perovskite thin films[131]; (g) time integrated photoluminescence spectra[131]; (h) time resolved photoluminescence dynamics of characteristic peaks[131]; (i)(j) delay time and actual width values extracted from SF fitting model at 300 K[131]; (k) schematic diagram of quantum vibration isolation mechanism[131]
|
|
Get Citation
Copy Citation Text
Xiangtong Kong, Ruiheng Jin, Yue Cui, Ke Xu, Kaiyang Wang, Can Huang. Research Progress on Micro/Nano Semiconductor Coherent Light Sources (Invited)[J]. Laser & Optoelectronics Progress, 2025, 62(15): 1500008
Category: Reviews
Received: Apr. 30, 2025
Accepted: May. 28, 2025
Published Online: Aug. 11, 2025
The Author Email: Kaiyang Wang (optoelectrogump@163.com), Can Huang (huangcan@hit.edu.cn)
CSTR:32186.14.LOP251133