Laser & Optoelectronics Progress, Volume. 62, Issue 15, 1500008(2025)

Research Progress on Micro/Nano Semiconductor Coherent Light Sources (Invited)

Xiangtong Kong1, Ruiheng Jin1, Yue Cui1, Ke Xu1, Kaiyang Wang1、**, and Can Huang1,2,3、*
Author Affiliations
  • 1Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, Guangdong , China
  • 2Heilongjiang Provincial Key Laboratory of Advanced Quantum Functional Materials and Sensor Devices, Harbin 150006, Heilongjiang , China
  • 3Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area, Shenzhen 518045, Guangdong , China
  • show less
    Figures & Tables(7)
    Typical microscale optical resonators. (a) Schematic diagram of a F-P laser[28]; (b) WGM optical resonator[28]; (c) schematic diagram of a photonic crystal laser[36]; (d) plasmonic nanostructure[53]; (e) single bound state in the continuum resonator[47]; (f) twisted Moiré photonic crystal structure[62]
    Comparison of laser, exciton polariton laser and superradiance. (a) Traditional laser emission mechanism; (b) exciton polariton coherent emission mechanism; (c) superradiance coherent emission mechanism
    Perovskite based micro/nano lasers. (a) WGM laser in perovskite microdisk[91]; (b) F-P laser in perovskite nanowires[90]; (c) mie resonance laser in perovskite nanocubes[94]; (d) surface plasmon laser on perovskite nanowires[110]; (e) perovskite VCSEL[98]; (f) perovskite WGM laser formed by electron beam exposure etching[102]; (g) perovskite DFB laser[101]; (h) BIC laser based on perovskite thin film[104]
    Exciton polariton laser based on two-dimensional perovskite. (a) Schematic diagram of room temperature exciton polariton laser device, including CsPbCl3 nanosheets with a thickness of 373 nm embedded in DBR[114]; (b) angle resolved photoluminescence spectra measured by the device at 1.3 times the threshold power[114]; (c) schematic diagram of BIC polariton condensation in CsPbBr3-PhC lattice at room temperature, generating directed vortex beam emission[125]; (d) polarization dependent topological laser designed using SSH model[121]; (e) polariton condensate capable of continuous optical pumping in nano textured perovskite microcavities at room temperature[119]
    Superradiance/superfluorescence phenomena in perovskite superlattices. (a) Schematic diagram of perovskite superlattices realizing superfluorescence[128]; (b) photoluminescence spectra of a single CsPbBr3 superlattice[128]; (c) time resolved PL decay of two emission bands (blue curve, from uncoupled quantum dots; dark red curve, from coupled quantum dots) [128]; (d) superfluorescence dynamics streak camera images[128]; (e) time resolved superfluorescence emission intensity curves at different excitation powers[128]; (f) SEM images of quasi-2D perovskite thin films[131]; (g) time integrated photoluminescence spectra[131]; (h) time resolved photoluminescence dynamics of characteristic peaks[131]; (i)(j) delay time and actual width values extracted from SF fitting model at 300 K[131]; (k) schematic diagram of quantum vibration isolation mechanism[131]
    • Table 1. Typical micro/nano lasers

      View table

      Table 1. Typical micro/nano lasers

      YearTypeGain materialWavelength λ /nmTemperature T /KTypical size /μmReference
      1979F-P laserGaInAsP/InP118077~50×504
      1992WGM laserInP/InGaAsP150077~3×331
      1999PhC defect laserInGaAsP QW1509143~8×836
      1999PhC band edge laserInGaAsP/InP~1300RT~245×24541
      2001F-P laserZnO385RT~0.1×524
      2007WGM laserInP1600RT~7.5×7.532
      2009Plasmonic laserInP/InGaAs1500RT~0.09×252
      2009Plasmonic laserCdS48910~0.1×553
      2017BIC laserInGaAsP QW1551.4RT~20×2045
      2017Topological laserInGaAsP QW1530RT~10×1059
      2020Topological laserGaAs/AlGaAs3.2 (THz)9

      ~1000

      ×1000

      60
      2024Singular nanolaserInGaAsP QW1580RT~6×663
    • Table 2. Comparison of laser, exciton polariton laser, and superradiance

      View table

      Table 2. Comparison of laser, exciton polariton laser, and superradiance

      TypeMechanismThresholdCoherenceCavity requirementMaterial
      LaserStimulated emission and population inversionHighOptical resonanceYes (optical resonator)Nd∶YAG, He-Ne, semiconductor
      Exciton polariton laserExciton-photon strong coupling induced Bose-Einstein condensationLowPolariton condensationYes (microcavity strong coupling)GaAs, TMDC, organic crystals
      SuperradianceCollective dipole synchronous radiationMany-body quantum coherenceNo (but can be enhanced by cavity)Cold atoms, quantum dots array
    Tools

    Get Citation

    Copy Citation Text

    Xiangtong Kong, Ruiheng Jin, Yue Cui, Ke Xu, Kaiyang Wang, Can Huang. Research Progress on Micro/Nano Semiconductor Coherent Light Sources (Invited)[J]. Laser & Optoelectronics Progress, 2025, 62(15): 1500008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Apr. 30, 2025

    Accepted: May. 28, 2025

    Published Online: Aug. 11, 2025

    The Author Email: Kaiyang Wang (optoelectrogump@163.com), Can Huang (huangcan@hit.edu.cn)

    DOI:10.3788/LOP251133

    CSTR:32186.14.LOP251133

    Topics