Infrared Technology, Volume. 44, Issue 11, 1167(2022)
Vehicle Infrared Target Detection Based on YOLOX and Swin Transformer
[1] [1] Caniou J. Passive Infrared Detection: Theory and Applications[M]. Springer Science & Business Media, 2013.
[5] [5] James W Davis, Vinay Sharma. Robust background-subtraction for person detection in thermal imagery[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004: 1-8.
[6] [6] Ei Baf Fida, Bouwmans Thierry, Vachon Bertrand. Fuzzy foreground detection for infrared video[C]//IEEE Computer society Conference on Computer Vision and Pattern Recognition, 2008: 1-6.
[13] [13] GE Z, LIU S, WANG F, et al. Yolox: Exceeding yolo seriesin[J/OL]. arXiv Preprint arXiv, 2107.08430.
[14] [14] Redmon J, Farhadi A. YOLO V3: an incremental improvement[J/OL]. arXiv Preprint arXiv, 1804.02767.
[15] [15] Bochkovskiy A, WANG C Y, LIAO H M. YOLOv4: optimal speed and accuracy of object detection[J/OL]. arXiv Preprint arXiv, 2004.10934.
[16] [16] ZHUANG L, Hanzi M, CHAO Yuan W, et al. A ConvNet for the 2020s[J/OL]. arXiv Preprint arXiv, 2201.03545.
[19] [19] Flir. FLIR Thermal Data Set[EB/OL]. [2022-04-02]. https://www.flir. com/oem/adas/adas-dataset-form/.
Get Citation
Copy Citation Text
LOU Zhehang, LUO Suyun. Vehicle Infrared Target Detection Based on YOLOX and Swin Transformer[J]. Infrared Technology, 2022, 44(11): 1167
Category:
Received: Jun. 10, 2022
Accepted: --
Published Online: Feb. 4, 2023
The Author Email:
CSTR:32186.14.