Laser Technology, Volume. 46, Issue 6, 729(2022)
Nonlinear thermal effects of optical components irradiated by high-power laser beam
[1] [1] CAMPBELL J H, HAWLEY-FEDDER R A, STOLZ C J, et al. NIF optical materials and fabrication technologies: An overview[C]//Optical Engineering at the Lawrence Livermore National Laboratory Ⅱ: The National Ignition Facility. San Jose, USA: International Society for Optics and Photonics, 2004: 84-101.
[2] [2] LIU W G, RAO P, HUA W H. Effects of thermal distortion of Si mirror irradiated by non-uniformity laser intensity on laser propagation[J]. High Power Laser and Particle Beams, 2008, 20(10): 1615-1619 (in Chinese).
[3] [3] HU P, ZHANG J Zh. Analysis of spatio-temporal characters of thermal effects of optical components in laser system[J]. Acta Optica Sinica, 2020, 40(20): 2014001(in Chinese).
[4] [4] PEANO J, SPRANGLE P, TING A, et al. Optical quality of high-power laser beams in lenses[J]. Journal of the Optical Society of America, 2009, B26(3): 503-510.
[5] [5] PENG Y F, CHENG Z H. Finite element analyses of thermal distortions of mirror substrates for high power laser[J]. High Power Laser and Particle Beams, 2005, 17(1): 5-8(in Chinese).
[6] [6] ZHANG X M, HU D X, XU D P, et al. Physical limitations of high-power, high-energy lasers[J]. Chinese Journal of Lasers, 2021, 48(12): 1201002(in Chinese).
[7] [7] LOU Zh K. Study on the damage mechanism of optical elements used in high energy laser system[D]. Changsha: National University of Defense Technology, 2017: 1-35 (in Chinese).
[8] [8] DRAGGOO V G, MORTON R G, SAWICKI R H, et al. Optical coating absorption measurement for high power laser systems[J]. Proceedings of the SPIE, 1986, 622:186-190.
[9] [9] CHOW R, TAYLOR J R, WU Zh L. Absorptance behavior of optical coatings for high-average-power laser applications[J]. Applied Optics, 2000, 39(4): 650-658.
[10] [10] ISIDRO-OJEDA M A, ALVARADO-GIL J J, ZANUTO V S, et al. Laser induced wave-front distortion in thick-disk material: An analytical description[J]. Optical Materials, 2018, 75(1): 574-579.
[11] [11] WANGY Y R, LI B Ch, LIU M Q. Laser-induced temperature distributions in finite radial-size optical mirror[J]. High Power Laser and Particle Beams, 2010, 22(2): 335-340 (in Chinese).
[12] [12] LIU M Q, LI B Ch. Analysis of temperature and deformation fields in an optical coating sample[J]. Acta Physica Sinica, 2008, 57(6): 3402-3409 (in Chinese).
[13] [13] ZHANG J Y, CHEN F, MA J, et al. Thermal deformation of fused silica substrates and its influence on beam quality[J]. Laser Technology, 2019, 43(3): 374-379 (in Chinese).
[14] [14] YANG F, HUANG W, ZHANG B, et al. Temperature field distribution and thermal distortion of thin film coatings irradiated by CO2 laser[J]. Laser Technology, 2004, 28(3): 255-258 (in Chinese).
[15] [15] LI L, SHI P, LI D L, et al. Thermal effect research of the output-coupler window in high power CO2 laser[J]. Laser Technology, 2004, 28(5): 510-513 (in Chinese).
[16] [16] HU H P. Theory of heat conduction[M]. Hefei: University of Science and Technology of China Press, 2010: 250-260 (in Chinese).
[17] [17] COELHO J M P, NESPEREIRA M, ABREU M, et al. 3D finite element model for writing long-period fiber gratings by CO2 laser radiation[J]. Sensors, 2013, 13(8): 10333-10347.
[18] [18] FANDERLIK I. Silica glass and its application (glass science and technology, volume 11) [M]. New York,USA: Elsevier, 1991: 213-230.
[19] [19] McLACHLAN A D, MEYER F P. Temperature dependence of the extinction coefficient of fused silica for CO2 laser wavelengths[J]. Applied Optics, 1987, 26(9): 1728-1731.
[20] [20] ZHU Z M. Physical optics[M]. Wuhan: Huazhong University of Science and Technology Press, 2009: 31-32 (in Chinese).
[21] [21] BORN M, WOLF E. Principles of optics[M]. 7th ed. Cambridge,UK: Cambridge University Press, 2019: 735-739.
[22] [22] NOWACKI W. Thermoelasticity[M]. 2nd ed. New York,USA: Pergamon Press, 1986: 1-44.
[23] [23] WANG H G. Introduction to thermoelasticity[M]. Beijing: Tsinghua University Press, 1989: 1-66 (in Chinese).
[24] [24] YAN Z D, WANG H L. Heat stress[M]. Beijing: Higher Education Press, 1993: 98-100 (in Chinese).
[25] [25] SUN F, CHENG Z H, ZHANG Y N, et al. Effects of clamping methods for laser mirrors on thermal deformation[J]. High Power Laser and Particle Beams, 2003, 15(8): 751-754 (in Chinese).
[26] [26] GLASSBRENNER C J, SLACK G A. Thermal conductivity of silicon and germanium from 3°K to the melting point[J]. Physical Review, 1964, A134(4): 634-636.
[27] [27] SHANKS H R, MAYCOCK P D, SIDLES P H, et al. Thermal conductivity of silicon from 300 to 1400°K[J]. Physical Review, 1963, 130(5): 1743-1748.
[28] [28] OKADA Y, TOKUMARU Y. Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500K[J]. Journal of Applied Physics, 1984, 56(2): 314-320.
[29] [29] MILLS K C, LEE C. Thermophysical properties of silicon[J]. The Iron and Steel Institute of Japan, 2000, 40(s): S130-S138.
Get Citation
Copy Citation Text
WANG Tianming, LI Bincheng, ZHAO Binxing, SUN Qiming. Nonlinear thermal effects of optical components irradiated by high-power laser beam[J]. Laser Technology, 2022, 46(6): 729
Category:
Received: Sep. 26, 2021
Accepted: --
Published Online: Feb. 4, 2023
The Author Email: LI Bincheng (bcli@uestc.edu.cn)