Opto-Electronic Engineering, Volume. 47, Issue 12, 200002(2020)

Automatic 3D vertebrae CT image active contour segmentation method based on weighted random forest

Liu Xia, Gan Quan, Li Bing, Liu Xiao, and Wang Bo*
Author Affiliations
  • [in Chinese]
  • show less
    References(23)

    [1] [1] Roth H R, Farag A, Lu L, et al. Deep convolutional networks for pancreas segmentation in CT imaging[J]. Proceedings of SPIE, 2015, 9413: 94131G.

    [2] [2] Glocker B, Feulner J, Criminisi A, et al. Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans[M]//Ayache N, Delingette H, Golland P, et al. Medical Image Computing and Computer-Assisted Intervention. Berlin Heidelberg: Springer, 2012: 590–598.

    [3] [3] Kang Y, Engelke K, Kalender W A. A new accurate and precise 3-D segmentation method for skeletal structures in volumetric CT data[J]. IEEE Transactions Medical Imaging, 2003, 22(5): 586–598.

    [4] [4] Lim P H, Bagci U, Bai L. Introducing Willmore flow into level set segmentation of spinal vertebrae[J]. IEEE Transactions on Bio-medical Engineering, 2013, 60(1): 115–122.

    [5] [5] Huang J Y, Jian F Z, Wu H, et al. An improved level set method for vertebra CT image segmentation[J]. Biomedical Engineering Online, 2013, 12: 48.

    [7] [7] Criminisi A, Shotton J, Robertson D, et al. Regression forests for efficient anatomy detection and localization in CT stu-dies[M]//Menze B, Langs G, Tu Z W, et al. Medical Computer Vision. Recognition Techniques and Applications in Medical Imaging. Berlin Heidelberg: Springer, 2010: 106–117.

    [8] [8] Criminisi A, Robertson D,KonukogluE, et al. Regression forests for efficient anatomy detection and localization in computed to-mography scans[J]. Medical Image Analysis, 2013, 17(8): 1293–1303.

    [9] [9] Cuingnet R, Prevost R, Lesage D, et al.Automatic detection and segmentation of kidneys in 3D CT images using random fo-rests[M]//Ayache N, Delingette H, Golland P, et al. Medical Im-age Computing and Computer-Assisted Intervention. Berlin Heidelberg: Springer, 2012: 66–74.

    [10] [10] Klinder T, Ostermann J, Ehm M, et al. Automated model-based vertebra detection, identification, and segmentation in CT im-ages[J]. Medical Image Analysis, 2009, 13(3): 471–482.

    [11] [11] Huang SH,Chu YH,Lai SH, et al. Learning-based vertebra detection and iterative normalized-cut segmentation for spinal MRI[J]. IEEE Transactions on Medical Imaging, 2009, 28(10): 1595–1605.

    [12] [12] Roberts M G, Cootes T F, Pacheco E, et al. Segmentation of lumbar vertebrae using part-based graphs and active appear-ance models[M]//Yang G Z, Hawkes D, Rueckert D, et al. Med-ical Image Computing and Computer-Assisted Intervention. Ber-lin Heidelberg: Springer, 2009: 1017–1024.

    [14] [14] Thieu Q T, Luong M, Rocchisani J M, et al. E.cient segmenta-tion with the convex local-global fuzzy Gaussian distribution ac-tive contour for medical applications[J]. Annals of Mathematics and Arti.cial Intelligence, 2015, 75(1–2): 249–266.

    [16] [16] Viola P, Jones M J. Robust real-time face detection[J]. Interna-tional Journal of Computer Vision, 2004, 57(2): 137–154.

    [17] [17] Tu Z W, Zhou X S, Bogoni L, et al. Probabilistic 3D polyp detec-tion in CT images: the role of sample alignment[C]//2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, 2006: 1544–1551.

    [18] [18] Breiman L. Random forests[J]. Machine Learning, 2001, 45: 5–32.

    [20] [20] Kass M, Witkin A, Terzopoulos D. Snake: active contour mod-els[J]. International Journal of Computer Vision, 1988, 1(4): 321–331.

    [21] [21] Malladi R, Sethian J A, Vemuri B C. Shape modeling with front propagation: a level set approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(2): 158–175.

    [22] [22] Hajiaghayi M, Groves E M, Jafarkhani H, et al. A 3-D active contour method for automated segmentation of the left ventricle from magnetic resonance images[J]. IEEE Transactions on Biomedical Engineering, 2017, 64(1): 134–144.

    [23] [23] Osher S, Fedkiw R, Piechor K. Level set methods and dynamic implicit surfaces[J]. Applied Mechanics Reviews, 2004, 57(3): B15.

    [24] [24] Forsberg D. Atlas-based segmentation of the thoracic and lum-bar vertebrae[M]//Yao J H, Glocker B, Klinder T, et al. Recent Advances in Computational Methods and Clinical Applications for Spine Imaging. Cham: Springer, 2015: 215–220.

    [25] [25] Hammernik K, Ebner T, Stern D, et al. Vertebrae segmentation in 3D CT Images based on a variational framework[M]// Yao J H, Glocker B, Klinder T, et al. Recent Advances in Computational Methods and Clinical Applications for Spine Imaging. Cham: Springer, 2015: 227–233.

    [26] [26] Dice L R. Measures of the amount of ecologic association be-tween species[J]. Ecology, 1945, 26(3): 297–302.

    [27] [27] Castro-Mateos I, Pozo J M, Lazary A, et al. 3D vertebra seg-mentation by feature selection active shape model[M]//Yao J H, Glocker B, Klinder T, et al. Recent Advances in Computational Methods and Clinical Applications for Spine Imaging. Cham: Springer, 2015: 241–245.

    Tools

    Get Citation

    Copy Citation Text

    Liu Xia, Gan Quan, Li Bing, Liu Xiao, Wang Bo. Automatic 3D vertebrae CT image active contour segmentation method based on weighted random forest[J]. Opto-Electronic Engineering, 2020, 47(12): 200002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Jan. 2, 2020

    Accepted: --

    Published Online: Jan. 14, 2021

    The Author Email: Bo Wang (hust_wb@126.com)

    DOI:10.12086/oee.2020.200002

    Topics