Spectroscopy and Spectral Analysis, Volume. 44, Issue 10, 2858(2024)
Near-Infrared Random Forest Classification and Recognition Based on Multi-Feature Fusion
[1] [1] Hamaoka Takafumi,McCully Kevin K. The Journal of Physiological Sciences,2019,69(6): 799.
[4] [4] Coyle Shirley,Ward Toms,Markham Charles,et al. Physiological Measurement,2004,25(4): 815.
[5] [5] Power Sarah D,Falk Tiago H,Chau Tom. Journal of Neural Engineering,2010,7(2): 026002.
[6] [6] Schudlo Larissa C,Chau Tom. Journal of Neural Engineering,2014,11(1): 016003.
[7] [7] Erdoan S B,Ykselen G. Sensors,2022,22(14): 5407.
[8] [8] Wang Feng,Ding Haishu,Tian Fenghua,et al. Physiological Measurement,2001,22(1): 201.
[9] [9] Sitaram Ranganatha,Zhang Haihong,Guan Cuntai,et al.Neurolmage, 2007,34(4): 1416.
Get Citation
Copy Citation Text
XIE Xi-ru, LUO Hai-jun, LI Guo-nan, FAN Xin-yan, WANG Kang-yu, LI Zhong-hong, WANG Jie. Near-Infrared Random Forest Classification and Recognition Based on Multi-Feature Fusion[J]. Spectroscopy and Spectral Analysis, 2024, 44(10): 2858
Received: Jan. 15, 2024
Accepted: Jan. 16, 2025
Published Online: Jan. 16, 2025
The Author Email: LUO Hai-jun (luohaijun@cqnu.edu.cn)