Journal of Innovative Optical Health Sciences, Volume. 18, Issue 2, 2450023(2025)
Mean-reverting diffusion model-enhanced acoustic-resolution photoacoustic microscopy for resolution enhancement: Toward optical resolution
[1] J. Yao, L. Song, L. V. Wang. Photoacoustic microscopy: Superdepth, superresolution, and superb contrast. IEEE Pulse, 6, 34-37(2015).
[2] W. Qi, T. Jin, J. Rong, H. Jiang, L. Xi. Inverted multiscale optical resolution photoacoustic microscopy. J. Biophoton., 10, 1580-1585(2017).
[3] S. Hu, L. V. Wang. Optical-resolution photoacoustic microscopy: Auscultation of biological systems at the cellular level. Biophys J., 105, 841-847(2013).
[4] C. D. Ly, T. H. Vo, S. Mondal, S. Park, J. Choi, T. T. H. Vu, C. S. Kim, J. Oh. Full-view in vivo skin and blood vessels profile segmentation in photoacoustic imaging based on deep learning. Photoacoustics, 25, 100310(2022).
[5] Y. L. Chen, F. Q. Liu, Y. Guo, J. Cheng, L. Yang, M. Lu, P. Li, J. Xu, T. Yu, Z. G. Wang, Y. Cao. PA/US dual-modality imaging to guide VEGFR-2 targeted photothermal therapy using ZnPc-/PFH-loaded polymeric nanoparticles. Biomater. Sci., 6, 2130-2143(2018).
[6] A. Berezhnoi, M. Schwarz, A. Buehler, S. V. Ovsepian, J. Aguirre, V. Ntziachristos. Assessing hyperthermia-induced vasodilation in human skin in vivo using optoacoustic mesoscopy. J. Biophoton., 11, e201700359(2018).
[7] T. Ida, H. Iwazaki, T. Omuro, Y. Kawaguchi, Y. Tsunoi, S. Kawauchi, S. Sato. Lensless high-resolution photoacoustic imaging scanner for in vivo skin imaging. Opt. Rev., 25, 33-39(2018).
[8] C. Zhang, K. Maslov, S. Hu, R. Chen, Q. Zhou, K. K. Shung, L. V. Wang. Reflection-mode submicron-resolution in vivo photoacoustic microscopy. J. Biomed. Opt., 17, 020501-020501(2012).
[9] J. W. Baik, J. Y. Kim, S. Cho, S. Choi, J. Kim, C. Kim. Super wide-field photoacoustic microscopy of animals and humans in vivo. IEEE Trans. Med. Imaging, 39, 975-984(2019).
[10] K. Maslov, H. F. Zhang, S. Hu, L. V. Wang. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt. Lett., 33, 929-931(2008).
[11] S. Park, C. Lee, J. Kim, C. Kim. Acoustic resolution photoacoustic microscopy. Biomed. Eng. Lett., 4, 213-222(2014).
[12] J. Brunker, P. Beard. Acoustic resolution photoacoustic Doppler velocimetry in blood-mimicking fluids. Sci. Rep., 6, 1-16(2016).
[13] H. Lei, L. A. Johnson, K. A. Eaton, S. Liu, J. Ni, X. Wang, P. D. Higgins, G. Xu. Characterizing intestinal strictures of Crohn’s disease in vivo by endoscopic photoacoustic imaging. Biomed. Opt. Express, 10, 2542-2555(2019).
[14] W. Xing, L. Wang, K. Maslov, L. V. Wang. Integrated optical-and acoustic-resolution photoacoustic microscopy based on an optical fiber bundle. Opt. Lett., 38, 52-54(2013).
[15] B. Jiang, X. Yang, Y. Liu, Y. Deng, Q. Luo. Multiscale photoacoustic microscopy with continuously tunable resolution. Opt. Lett., 39, 3939-3941(2014).
[16] X. Song, X. Yu, R. Wang, G. Chen, J. Zeng. Multiscale photoacoustic imaging without motion using single-pixel imaging. J. Biophoton., 15, e202100299(2022).
[17] J. Gröhl, M. Schellenberg, K. Dreher, L. Maier-Hein. Deep learning for biomedical photoacoustic imaging: A review. Photoacoustics, 22, 100241(2021).
[18] M. Kim, G. S. Jeng, I. Pelivanov, M. O’Donnell. Deep-learning image reconstruction for real-time photoacoustic system. IEEE Trans. Med. Imaging, 39, 3379-3390(2020).
[19] S. Antholzer, M. Haltmeier, J. Schwab. Deep learning for photoacoustic tomography from sparse data. Inverse Prob. Sci. Eng., 27, 987-1005(2019).
[20] A. Hauptmann, B. Cox. Deep learning in photoacoustic tomography: Current approaches and future directions. J. Biomed. Opt., 25, 112903-112903(2020).
[21] A. Sharma, M. Pramanik. Improving out-of-focus resolution in acoustic resolution photoacoustic microscopy using deep learning. Proc. SPIE, 11642, 327-334(2021).
[22] Z. Zhang, H. Jin, W. Zhang, W. Lu, Z. Zheng, A. Sharma, M. Pramanik, Y. Zheng. Adaptive enhancement of acoustic resolution photoacoustic microscopy imaging via deep CNN prior. Photoacoustics, 30, 100484(2023).
[23] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, C. Change Loy. Esrgan: Enhanced super-resolution generative adversarial networks, 63-79.
[24] R. Wang, Z. Zhang, R. Chen, X. Yu, H. Zhang, G. Hu, Q. Liu, X. Song. Noise-insensitive defocused signal and resolution enhancement for optical-resolution photoacoustic microscopy via deep learning. J. Biophoton., 16, e202300149(2023).
[25] A. Sharma, M. Pramanik. Convolutional neural network for resolution enhancement and noise reduction in acoustic resolution photoacoustic microscopy. Biomed. Opt. Express, 11, 6826-6839(2020).
[26] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courvile, Y. Bengio. Generative adversarial networks. Commun. ACM, 63, 139-144(2020).
[27] C. Doersch. Tutorial on variational autoencoders(2016).
[28] D. Rezende, S. Mohamed. Variational inference with normalizing flows, 1530-1538.
[29] J. Ho, A. Jain, P. Abbeel. Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst., 33, 6840-6851(2020).
[30] Y. Song, S. Ermon. Improved techniques for training score-based generative models. Proc. Adv. Neural Inf. Process. Syst., 33, 12438-12448(2020).
[32] X. Song, G. Wang, W. Zhong, K. Guo, Z. Li, X. Liu, J. Dong, Q. Liu. Sparse-view reconstruction for photoacoustic tomography combining diffusion model with model-based iteration. Photoacoustics, 33, 100558(2023).
[33] S. Dey, S. Saha, B. T. Feng, M. Cui, L. Delisle, O. Leong, L. V. Wang, K. L. Bouman. Score-based diffusion models for photoacoustic tomography image reconstruction, 2470-2474.
[34] G. Wang, Y. Hu, G. Hu, H. Zhang, Q. Liu, X. Song. Generative model for sparse photoacoustic tomography artifact removal, 12-15.
[35] Z. Luo, F. K. Gustafsson, Z. Zhao, J. Sjölund, T. B. Schön. Image restoration with mean-reverting stochastic differential equations, 23045-23066.
[36] M. Chen, H. J. Knox, Y. Tang, W. Liu, L. Nie, J. Chan, J. Yao. Simultaneous photoacoustic imaging of intravascular and tissue oxygenation. Opt. Lett., 44, 3773-3776(2019).
[37] F. Feng, S. Liang, J. Luo, S. L. Chen. High-fidelity deconvolution for acoustic-resolution photoacoustic microscopy enabled by convolutional neural networks. Photoacoustics, 26, 100360(2022).
[38] B. E. Treeby, B. T. Cox. k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt., 15, 021314(2010).
[39] Z. Luo, F. K. Gustafsson, Z. Zhao, J. Sjölund, T. B. Schön. Refusion: Enabling large-size realistic image restoration with latent-space diffusion models, 1680-1691.
[40] W. H. Richardson. Bayesian-based iterative method of image restoration. J. Opt. Soc. Am., 62, 55-59(1972).
[41] L. B. Lucy. An iterative technique for the rectification of observed distributions. Astrophys. J., 79, 745-754(1974).
[42] J. Y. Zhu, T. Park, P. Isola, A. A. Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks, 2223-2232(2017).
[43] I. Loc, M. B. Unlu. Accelerating photoacoustic microscopy by reconstructing undersampled images using diffusion models. Sci. Rep., 14, 16996(2024).
[44] K. Guo, Z. Zheng, W. Zhong, Z. Li, G. Wang, J. Li, Y. Cao, Y. Wang, J. Lin, Q. Liu, X. Song. Score-based generative model-assisted information compensation for high-quality limited-view reconstruction in photoacoustic tomography. Photoacoustics, 38, 100623(2024).
Get Citation
Copy Citation Text
Yiyang Cao, Shunfeng Lu, Cong Wan, Yiguang Wang, Xuan Liu, Kangjun Guo, Yubin Cao, Zilong Li, Qiegen Liu, Xianlin Song. Mean-reverting diffusion model-enhanced acoustic-resolution photoacoustic microscopy for resolution enhancement: Toward optical resolution[J]. Journal of Innovative Optical Health Sciences, 2025, 18(2): 2450023
Category: Research Articles
Received: Jun. 7, 2024
Accepted: Aug. 6, 2024
Published Online: Apr. 7, 2025
The Author Email: Qiegen Liu (liuqiegen@ncu.edu.cn), Xianlin Song (songxianlin@ncu.edu.cn)