Journal of the Chinese Ceramic Society, Volume. 53, Issue 8, 2410(2025)
Research progress on High-Entropy Inorganic Solid-State Electrolytes
[1] [1] YEH W J, CHEN K S, LIN J S, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv Eng Mater, 2004, 6(5): 299-303.
[2] [2] CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Mater Sci Eng A, 2004, 375: 213-218.
[3] [3] YEH J-W. Recent progress in high-entropy alloys [J]. Ann Chim-Sci Mater, 2006, 31: 633-648.
[4] [4] GEORGE E P, RAABE D, RITCHIE R O. High-entropy alloys[J]. Nat Rev Mater, 2019, 4(8): 515-534.
[5] [5] OSES C, TOHER C, CURTAROLO S. High-entropy ceramics [J]. Nat Rev Mater, 2020, 5(4): 295-309.
[6] [6] SCHWEIDLER S, BOTROS M, STRAUSS F, et al. High-entropy materials for energy and electronic applications[J]. Nat Rev Mater, 2024, 9: 266-281.
[7] [7] TUO K Y, SUN C W, LIU S Q. Recent progress in and perspectives on emerging halide superionic conductors for all-solid-state batteries[J]. Electrochem Energy Rev, 2023, 6(1): 17.
[8] [8] ZHAO Q, STALIN S, ZHAO C Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries[J]. Nat Rev Mater, 2020, 5: 229-252.
[9] [9] JUN K, CHEN Y, WEI G, et al. Diffusion mechanisms of fast lithium-ion conductors[J]. Nat Rev Mater, 2024, 9: 887-905.
[10] [10] BUSCHMANN H, DLLE J, BERENDTS S, et al. Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12”[J]. Phys Chem Chem Phys, 2011, 13(43): 19378-19392.
[11] [11] MEIER K, LAINO T, CURIONI A. Solid-state electrolytes: Revealing the mechanisms of Li-ion conduction in tetragonal and cubic LLZO by first-principles calculations[J]. J Phys Chem C, 2014, 118(13): 6668-6679.
[12] [12] KRAUSKOPF T, DIPPEL R, HARTMANN H, et al. Lithium-metal growth kinetics on LLZO garnet-type solid electrolytes[J]. Joule, 2019, 3(8): 2030-2049.
[13] [13] CONNELL J G, FUCHS T, HARTMANN H, et al. Kinetic versus thermodynamic stability of LLZO in contact with lithium metal[J]. Chem Mater, 2020, 32(23): 10207-10215.
[14] [14] HAN J T, ZHU J L, LI Y T, et al. Experimental visualization of lithium conduction pathways in garnet-type Li7La3Zr2O12[J]. Chem Commun, 2012, 48(79): 9840-9842.
[15] [15] AWAKA J, KIJIMA N, HAYAKAWA H, et al. Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure[J]. J Solid State Chem, 2009, 182(8): 2046-2052.
[16] [16] BUANNIC L, ORAYECH B, LPEZ DEL AMO J M, et al. Dual substitution strategy to enhance Li+ ionic conductivity in Li7La3Zr2O12 solid electrolyte[J]. Chem Mater, 2017, 29(4): 1769-1778.
[17] [17] WANG Y, WU Y J, WANG Z X, et al. Doping strategy and mechanism for oxide and sulfide solid electrolytes with high ionic conductivity[J]. J Mater Chem A, 2022, 10(9): 4517-4532.
[18] [18] JUNG S K, GWON H, KIM H, et al. Unlocking the hidden chemical space in cubic-phase garnet solid electrolyte for efficient quasi-all-solid-state lithium batteries[J]. Nat Commun, 2022, 13(1): 7638.
[19] [19] FENG Y T, YANG L, YAN Z H, et al. Discovery of high entropy garnet solid-state electrolytesviaultrafast synthesis[J]. Energy Storage Mater, 2023, 63: 103053.
[20] [20] YU S Y, LI Y D, LUO J X, et al. Reasonable design a high-entropy garnet-type solid electrolyte for all-solid-state lithium batteries[J]. J Energy Chem, 2024, 96: 414-423.
[21] [21] CHEN Y W, WANG T R, CHEN H C, et al. Local structural features of medium-entropy garnet with ultra-long cycle life[J]. Matter, 2023, 6(5): 1530-1541.
[22] [22] ZENG Y, OUYANG B, LIU J, et al. High-entropy mechanism to boost ionic conductivity[J]. Science, 2022, 378(6626): 1320-1324.
[23] [23] WANG S H, WEN X J, HUANG Z, et al. High-entropy strategy flattening lithium ion migration energy landscape to enhance the conductivity of garnet-type solid-state electrolytes[J]. Adv Funct Mater, 2025, 35(9): 2416389.
[24] [24] KUO C H, WANG A Y, LIU H Y, et al. A novel garnet-type high-entropy oxide as air-stable solid electrolyte for Li-ion batteries[J]. 2022, 10(12): 121104.
[25] [25] HAN S X, WANG Z Q, MA Y, et al. Fast ion-conducting high-entropy garnet solid-state electrolytes with excellent air stability[J]. J Adv Ceram, 2023, 12(6): 1201-1213.
[26] [26] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nat Mater, 2011, 10(9): 682-686.
[27] [27] PATEL S V, BANERJEE S, LIU H Y, et al. Tunable lithium-ion transport in mixed-halide argyrodites Li6-xPS5-xClBrx: An unusual compositional space[J]. Chem Mater, 2021, 33(4): 1435-1443.
[28] [28] BOULINEAU S, COURTY M, TARASCON J M, et al. Mechanochemical synthesis of Li-argyrodite Li6PS5 X (X =Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application[J]. Solid State Ion, 2012, 221: 1-5.
[29] [29] HANGHOFER I, GADERMAIER B, WILKENING H M R. Fast rotational dynamics in argyrodite-type Li6PS5X (X: Cl, Br, I) as seen by 31P nuclear magnetic relaxation: On cation-anion coupled transport in thiophosphates[J]. Chem Mater, 2019, 31(12): 4591-4597.
[30] [30] HANGHOFER I, BRINEK M, EISBACHER S L, et al. Substitutional disorder: Structure and ion dynamics of the argyrodites Li6PS5Cl, Li6PS5Br and Li6PS5I[J]. Phys Chem Chem Phys, 2019, 21(16): 8489-8507.
[31] [31] LI S H, LIN J, SCHALLER M, et al. High-entropy lithium argyrodite solid electrolytes enabling stable all-solid-state batteries[J]. Angew Chem Int Ed, 2023, 62(50): e202314155.
[32] [32] LIN J, SCHALLER M, CHERKASHININ G, et al. Synthetic tailoring of ionic conductivity in multicationic substituted, high-entropy lithium argyrodite solid electrolytes[J]. Small, 2024, 20(15): e2306832.
[33] [33] LIN J, CHERKASHININ G, SCHFER M, et al. A high-entropy multicationic substituted lithium argyrodite superionic solid electrolyte[J]. ACS Mater Lett, 2022, 4(11): 2187-2194.
[34] [34] KRAFT M A, OHNO S, ZINKEVICH T, et al. Inducing high ionic conductivity in the lithium superionic argyrodites Li6+xP1-xGexS5I for all-solid-state batteries[J]. J Am Chem Soc, 2018, 140(47): 16330-16339.
[35] [35] MINAFRA N, CULVER S P, KRAUSKOPF T, et al. Effect of Si substitution on the structural and transport properties of superionic Li-argyrodites[J]. J Mater Chem A, 2018, 6(2): 645-651.
[36] [36] ZHOU L D, ASSOUD A, ZHANG Q, et al. New family of argyrodite thioantimonate lithium superionic conductors[J]. J Am Chem Soc, 2019, 141(48): 19002-19013.
[37] [37] WANG P B, PATEL S, LIU H Y, et al. Configurational and dynamical heterogeneity in superionic Li5.3PS4.3Cl1.7-xBrx[J]. Adv Funct Materials, 2023, 33(51): 2307954.
[38] [38] LI W J, CHEN Z Y, CHEN Y S, et al. High-entropy argyrodite-type sulfide electrolyte with high conductivity and electro-chemo- mechanical stability for fast-charging all-solid-state batteries[J]. Adv Funct Mater, 2024, 34(23): 2312832.
[39] [39] STRAUSS F, LIN J, DUFFIET M, et al. High-entropy polyanionic lithium superionic conductors[J]. ACS Mater Lett, 2022, 4(2): 418-423.
[40] [40] LI Y X, SONG S B, KIM H, et al. A lithium superionic conductor for millimeter-thick battery electrode[J]. Science, 2023, 381(6653): 50-53.
[41] [41] ASANO T, SAKAI A, OUCHI S, et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries[J]. Adv Mater, 2018, 30(44): e1803075.
[42] [42] WANG Q D, ZHOU Y N, WANG X L, et al. Designing lithium halide solid electrolytes[J]. Nat Commun, 2024, 15(1): 1050.
[43] [43] TAO B R, ZHONG D L, LI H D, et al. Halide solid-state electrolytes for all-solid-state batteries: Structural design, synthesis, environmental stability, interface optimization and challenges[J]. Chem Sci, 2023, 14(33): 8693-8722.
[44] [44] PARK K H, KIM S Y, JUNG M, et al. Anion engineering for stabilizing Li interstitial sites in halide solid electrolytes for all-solid-state Li batteries[J]. ACS Appl Mater Interfaces, 2023, 15(50): 58367-58376.
[45] [45] KWAK H, WANG S, PARK J, et al. Emerging halide superionic conductors for all-solid-state batteries: Design, synthesis, and practical applications[J]. ACS Energy Lett, 2022, 7(5): 1776-1805.
[46] [46] ZHAO N, GUO X X. A new family of halide electrolytes for all-solid-state lithium batteries[J]. Sci Bull, 2023, 68(15): 1598-1599.
[47] [47] LI X N, XU Y, ZHAO C T, et al. The universal super cation- conductivity in multiple-cation mixed chloride solid-state electrolytes[J]. Angew Chem Int Ed, 2023, 62(48): e202306433.
[48] [48] SONG Z Y, WANG T R, YANG H, et al. Promoting high-voltage stability through local lattice distortion of halide solid electrolytes[J]. Nat Commun, 2024, 15(1): 1481.
[49] [49] LI D Y, YU D F, ZHANG G W, et al. High configuration entropy promises electrochemical stability of chloride electrolytes for high- energy, long-life all-solid-state batteries[J]. Angew Chem Int Ed, 2025, 64(7): e202419735.
Get Citation
Copy Citation Text
CHEN Yuwei, LUO Wei. Research progress on High-Entropy Inorganic Solid-State Electrolytes[J]. Journal of the Chinese Ceramic Society, 2025, 53(8): 2410
Category:
Received: Jan. 24, 2025
Accepted: Sep. 5, 2025
Published Online: Sep. 5, 2025
The Author Email: LUO Wei (weiluo@tongji.edu.cn)