Chinese Annals of Mathematics,Series B, Volume. 46, Issue 4, 547(2025)

Exact-Approximate Controllability of the Abstract Thermoelasticity of Type I

LI Dongli
References(14)

[1] [1] Ait Ben Hassi, E., Bouslous, H. and Maniar, L., Compact decoupling for thermoelasticity in irregular domains,Asymptot. Anal.,58(1–2), 2008, 47–56.

[2] [2] Avalos, G. and Lasiecka, I., Exact-approximate boundary reachability of thermoelastic plates under variable thermal coupling,Inverse Problems,16(4), 2000, 979–996.

[3] [3] Dauer, J. P. and Mahmudov, N. I., Approximate controllability of semilinear functional equations in Hilbert spaces,J. Math. Anal. Appl.,273(2), 2002, 310–327.

[4] [4] De Teresa, L. and Zuazua, E., Controllability of the linear system of thermoelastic plates,Adv. Differential Equations,1(3), 1996, 369–402.

[5] [5] Hansen, S. W., Boundary control of a one-dimensional linear thermoelastic rod,SIAM J. Control Optim.,32(4), 1994, 1054–1074.

[6] [6] Henry, D., Lopoes, O. and Perissinottto, A., On the essential spectrum of a semigroup of thermoelastictity,Nonlinear Anal. T. M. A.,21(1), 1993, 65–75.

[7] [7] Li, D., Compact decoupling for an abstract system of thermoelasticity of type III,J. Math. Anal. Appl.,370(2), 2010, 491–497.

[8] [8] Li, X. and Yong, J., Optimal Control Theory for Infinite Dimensional Systems, Birkhuser, Boston, Massachusetts, 1995.

[9] [9] Liu, W. J., Partial exact controllability and exponential stability in higher-dimensional linear thermoelasticity,ESAIM:Control Optim. Calc. Var.,3, 1998, 23–48.

[10] [10] Papageorgiou, N. S., Optimal control of nonlinear evolution inclusions,J. Optim. Theory Appl.,67(2), 1990, 321–354.

[11] [11] Russell, D. L., Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions,SIAM Review,20(4), 1978, 639–739.

[12] [12] Zhang, X., Exact controllability of the semilinear evolution systems and its application,J. Optim. Theory Appl.,107(2), 2000, 415–432.

[13] [13] Zhou, H., Approximate controllability for a class of semilinear abstract equations,SIAM J. Control Optim.,21(4), 1983, 551–555.

[14] [14] Zuazua, E., Controllability of the linear system of thermoelasticity,J. Math. Pures Appl.,74(4), 1995, 291–315.

Tools

Get Citation

Copy Citation Text

LI Dongli. Exact-Approximate Controllability of the Abstract Thermoelasticity of Type I[J]. Chinese Annals of Mathematics,Series B, 2025, 46(4): 547

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Received: Nov. 29, 2022

Accepted: Aug. 25, 2025

Published Online: Aug. 25, 2025

The Author Email:

DOI:10.1007/s11401-025-0028-x

Topics