Chinese Annals of Mathematics,Series B, Volume. 46, Issue 4, 547(2025)
Exact-Approximate Controllability of the Abstract Thermoelasticity of Type I
[1] [1] Ait Ben Hassi, E., Bouslous, H. and Maniar, L., Compact decoupling for thermoelasticity in irregular domains,Asymptot. Anal.,58(1–2), 2008, 47–56.
[2] [2] Avalos, G. and Lasiecka, I., Exact-approximate boundary reachability of thermoelastic plates under variable thermal coupling,Inverse Problems,16(4), 2000, 979–996.
[3] [3] Dauer, J. P. and Mahmudov, N. I., Approximate controllability of semilinear functional equations in Hilbert spaces,J. Math. Anal. Appl.,273(2), 2002, 310–327.
[4] [4] De Teresa, L. and Zuazua, E., Controllability of the linear system of thermoelastic plates,Adv. Differential Equations,1(3), 1996, 369–402.
[5] [5] Hansen, S. W., Boundary control of a one-dimensional linear thermoelastic rod,SIAM J. Control Optim.,32(4), 1994, 1054–1074.
[6] [6] Henry, D., Lopoes, O. and Perissinottto, A., On the essential spectrum of a semigroup of thermoelastictity,Nonlinear Anal. T. M. A.,21(1), 1993, 65–75.
[7] [7] Li, D., Compact decoupling for an abstract system of thermoelasticity of type III,J. Math. Anal. Appl.,370(2), 2010, 491–497.
[8] [8] Li, X. and Yong, J., Optimal Control Theory for Infinite Dimensional Systems, Birkhuser, Boston, Massachusetts, 1995.
[9] [9] Liu, W. J., Partial exact controllability and exponential stability in higher-dimensional linear thermoelasticity,ESAIM:Control Optim. Calc. Var.,3, 1998, 23–48.
[10] [10] Papageorgiou, N. S., Optimal control of nonlinear evolution inclusions,J. Optim. Theory Appl.,67(2), 1990, 321–354.
[11] [11] Russell, D. L., Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions,SIAM Review,20(4), 1978, 639–739.
[12] [12] Zhang, X., Exact controllability of the semilinear evolution systems and its application,J. Optim. Theory Appl.,107(2), 2000, 415–432.
[13] [13] Zhou, H., Approximate controllability for a class of semilinear abstract equations,SIAM J. Control Optim.,21(4), 1983, 551–555.
[14] [14] Zuazua, E., Controllability of the linear system of thermoelasticity,J. Math. Pures Appl.,74(4), 1995, 291–315.
Get Citation
Copy Citation Text
LI Dongli. Exact-Approximate Controllability of the Abstract Thermoelasticity of Type I[J]. Chinese Annals of Mathematics,Series B, 2025, 46(4): 547
Received: Nov. 29, 2022
Accepted: Aug. 25, 2025
Published Online: Aug. 25, 2025
The Author Email: