Laser & Optoelectronics Progress, Volume. 62, Issue 4, 0428002(2025)

Strip Object Detection Method for Multiscale Optical Remote Sensing Images Without Anchors

Qi He* and Hao Shen
Author Affiliations
  • State Key Laboratory of Media Convergence and Communication, Communication University of China, Beijing 100024, China
  • show less
    Figures & Tables(14)
    Development and classification of deep learning object detection methods
    Basic framework of proposed method
    Proposed CSASPP module
    Coordinate attention mechanism
    Strip pooling module
    Partial data in DIOR dataset
    Loss variation curves during training reasoning process of different methods
    mAP variation curves during training process
    Comparison of detection results between proposed method and other methods on DIOR dataset. (a) Faster R-CNN method; (b) CenterNet method; (c) SSD method; (d) RetinaNet method; (e) proposed method
    • Table 1. Parameters setting

      View table

      Table 1. Parameters setting

      ParameterValueParameterValue
      Input image size800×800Mixed precision trainingTrue
      Freeze trainTruePretrainedTrue
      Freeze batchsize16Freeze epoch50
      Unfreeze batchsize8Unfreeze epoch100
      Init_lr0.0005Lr_decay_typeCos
      Optimizer_typeAdamMomentum0.9
    • Table 2. Effectiveness experiments of proposed CSASPP module at different dilation rates

      View table

      Table 2. Effectiveness experiments of proposed CSASPP module at different dilation rates

      ModelBackboneDilation rateIOU is 0.5IOU is 0.75
      mAP /%MR-2 /%mAP /%MR-2 /%
      ASPP+CA+SP-1Resnet50(1,3,6)79.0833.1055.1355.10
      ASPP+CA+SP-2Resnet50(3,6,9)79.9032.3555.4854.85
      ASPP+CA+SP-3Resnet50(6,12,18)79.1932.8054.3255.30
      ASPP+CA+SP-4Resnet50(9,18,36)79.7132.3555.2854.70
    • Table 3. Ablation experiment

      View table

      Table 3. Ablation experiment

      ModelBackboneDilation rateIOU is 0.5IOU is 0.75
      mAP /%MR-2 /%mAP /%MR-2 /%
      ASPP[31]Resnet50(6,12,18)77.9834.2052.7756.95
      ASPP+Resnet50(3,6,9)79.5532.8053.8855.95
      ASPP+CAResnet50(3,6,9)75.3139.4546.5663.40
      ASPP+SPResnet50(3,6,9)79.3432.8054.5355.90
      ASPP+CA+SPResnet50(3,6,9)79.9032.3555.4854.85
    • Table 4. Performance of the proposed method with other methods at different thresholds

      View table

      Table 4. Performance of the proposed method with other methods at different thresholds

      MethodBackboneIOU is 0.5IOU is 0.75Number of parameters /106GFLOPS /109
      mAP /%MR-2 /%mAP /%MR-2 /%
      Faster R-CNN[4]Resnet5064.6647.4038.0966.80137.078547.392
      CenterNet[11]Resnet5071.2743.8044.0365.1032.665171.428
      SSD[32]Resnet5075.9641.6052.3461.2014.211104.309
      RetinaNet[33]Resnet5078.0632.5060.6850.6536.724266.322
      Proposed methodResnet5079.9032.3555.4854.85186.327355.464
    • Table 5. AP values of different methods and categories (IOU is 0.5)

      View table

      Table 5. AP values of different methods and categories (IOU is 0.5)

      CategoriesFaster R-CNNCenterNetSSDRetinaNetProposed method
      mAP64.6671.2775.9678.0679.90
      Airplane64.7893.2393.3688.6993.07
      Vehicle16.7660.8755.2939.3762.90
      Ship20.2483.3094.7577.0381.72
      Storage tank21.1460.9268.8645.2958.60
      Wind mill53.0183.8690.4386.0587.64
      Chimney86.6287.4192.7194.8489.17
      Dam70.6550.1062.4384.5170.79
      Overpass58.9255.5563.5465.6364.76
      Bridge35.7341.6539.3344.6655.08
      Tennis court87.4593.8995.4795.1594.16
      Airport83.1756.8962.6981.7286.83
      Golf field90.2264.7269.5391.0188.93
      Ground track field77.9481.0682.1990.4388.88
      Stadium93.4085.9589.3097.6395.40
      Expressway service area82.5174.3686.4294.8783.92
      Expressway toll station59.2078.4575.5278.0778.75
      Harbor61.3950.3666.8567.4958.20
      Train station59.8343.2648.2256.6178.63
      Baseball field87.1191.5692.0591.6492.18
      Basketball court83.0588.0390.2090.4988.45
    Tools

    Get Citation

    Copy Citation Text

    Qi He, Hao Shen. Strip Object Detection Method for Multiscale Optical Remote Sensing Images Without Anchors[J]. Laser & Optoelectronics Progress, 2025, 62(4): 0428002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: May. 9, 2024

    Accepted: Jun. 27, 2024

    Published Online: Feb. 18, 2025

    The Author Email:

    DOI:10.3788/LOP241242

    CSTR:32186.14.LOP241242

    Topics