Journal of Innovative Optical Health Sciences, Volume. 18, Issue 2, 2543002(2025)
A potential strategy for colorectal tumor diagnosis: Polarized light imaging technology
[1] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, A. Jemal. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 68, 394-424(2018).
[2] M. Ju, H. Cheng, K. Qu, X. Lu. Efficacy and safety of ramucirumab treatment in patients with advanced colorectal cancer: A protocol for systematic review and meta analysis. Medicine, 99, e20618(2020).
[3] N. Bacalbasa, I. Balescu, M. Vilcu, S. Dima, I. Brezean, B. Pharmacy. The role of hepatic resection for gastric cancer liver metastases – Literature review. Romanian Med. J., 67, 10-13(2020).
[4] N. Ortega-Quijano et al. Experimental validation of Mueller matrix differential decomposition. Opt. Express, 20, 1151-1163(2012).
[5] R. Ossikovski, A. De Martino, S. Guyot. Forward and reverse product decompositions of depolarizing Mueller matrices. Opt. Lett., 32, 689-691(2007).
[6] T. Yun et al. Monte Carlo simulation of polarized photon scattering in anisotropic media. Opt. Express, 17, 16590-16602(2009).
[7] P. Li et al. Analysis of tissue microstructure with Mueller microscopy: Logarithmic decomposition and Monte Carlo modeling. J. Biomed. Opt., 25, 1-11(2020).
[8] J. C. Ramella-Roman et al. Design, testing, and clinical studies of a handheld polarized light camera. J. Biomed. Opt., 9, 1305-1310(2004).
[9] J. C. Ramella-Roman, S.-T. Jacques. Mueller-matrix description of collimated light transmission through liver, muscle, and skin. Proc. SPIE, 4257, 110-116(2001).
[10] M. Garazdiuk, O. Dubolazov, V. Tiulienieva. Forensic medical differential diagnosis of brain infarctions and hemorrhasis of traumatic genesis by mueller-matrix microscopy. Bukovinian Med. Herald, 25, 24-30(2021).
[11] S. L. Jacques, K. Lee, J.-T. Ramella-Roman. Scattering of polarized light by biological tissues. Proc. SPIE, 4001, 110-116(2000).
[12] S. Alali et al. Quantitative correlation between light depolarization and transport albedo of various porcine tissues. J. Biomed. Opt., 17, 045004(2012).
[13] J. Ingrid, B. Erin, A. Elizabeth et al. Eicosatetraynoic acid and butyrate regulate human intestinal organoid mitochondrial and extracellular matrix pathways implicated in Crohn’s disease strictures. Inflamm. Bowel Dis., 28, 400-402(2022).
[14] G. Gordon, J. Joseph, M. P. Alcolea et al. Quantitative phase and polarization imaging through an optical fiber applied to detection of early esophageal tumorigenesis. J. Biomed. Opt., 24, 1-13(2019).
[15] J. Ramella-Roman, I. Saytashev, M. Piccini. A review of polarization-based imaging technologies for clinical and pre-clinical applications. J. Opt., 22, 123001(2020).
[16] H. He, R. Liao, N. Zeng et al. Mueller matrix polarimetry-An emerging new tool for characterizing the microstructural feature of complex biological specimen. J. Lightwave Technol., 37, 2534-2548(2019).
[17] N. Ghosh, I. A. Vitkin. Tissue polarimetry: concepts, challenges, applications, and outlook. J. Biomed. Opt., 16, 110801(2011).
[18] V. V. Tuchin. Polarized light interaction with tissues. J. Biomed. Opt., 21, 71114(2016).
[19] B. Liu, Y. Yao, R. Liu, H. Ma, L. Ma. Mueller polarimetric imaging for characterizing the collagen microstructures of breast cancer tissues in different genotypes. Opt. Commun., 433, 60-67(2019).
[20] M. Sun, H. He, N. Zeng, E. Du, Y. Guo, S. Liu, J. Wu, Y. He, H. Ma. Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters. Biomed. Opt. Express, 5, 4223-4234(2014).
[21] Q.-H. Phan, Y.-L. Lo. Differential Mueller matrix polarimetry technique for non-invasive measurement of glucose concentration on human fingertip. Opt. Express, 25, 15179-15187(2017).
[22] J. Qi, D. S. Elson. Mueller polarimetric imaging for surgical and diagnostic applications: A review. J. Biophotonics, 10, 950-982(2017).
[23] C. He, H. He, J. Chang, B. Chen, H. Ma, M. J. Booth. Polarisation optics for biomedical and clinical applications: A review. Light Sci. Appl., 10, 194(2021).
[24] Y. Wang et al. Mueller matrix microscope: A quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues. J. Biomed. Opt., 21, 71112(2016).
[25] H. He et al. Transformation of full 4×4 Mueller matrices: A quantitative technique for biomedical diagnosis. Proc. SPIE, 9707, 400-402(2016).
[26] T. Liu et al. Distinguishing structural features between Crohn’s disease and gastrointestinal luminal tuberculosis using Mueller matrix derived parameters. J. Biophotonics, 12, 400-402(2019).
[27] Y. Dong, J. Qi, H. He et al. Quantitatively characterizing the microstructural features of breast ductal carcinoma tissues in different progression stages by Mueller matrix microscope. Biomed. Opt. Express, 8, 3643-3655(2017).
[28] R. Youssef, N. Kfoury, M. Khalifeh et al. Yellow - gold polarized light microscopy may improve accuracy of pathological staging of colorectal adenocarcinoma. Cureus, 12(2020).
[29] H. Tamura, S. Mori, T. Yamawaki. Textural features corresponding to visual perception. IEEE Trans. Syst. Man Cybern., 8, 460-473(1978).
[30] N. Ortega-Quijano, F. Fanjul-Vélez, J. de Cos-Pérez et al. Analysis of the depolarizing properties of normal and adenomatous polyps in colon mucosa for the early diagnosis of precancerous lesions. Opt. Commun., 284, 4852-4856(2011).
[31] M. Sun, H. He, N. Zeng et al. Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters. Biomed. Opt. Express, 5, 4223-4234(2014).
[32] H.-Y. Yuan, X.-F. Tong, Y.-Y. Ren et al. AI-based digital pathology provides newer insights into lifestyle intervention-induced fibrosis regression in MASLD: An exploratory study. Liver Int., 10, 2572-2582(2024).
[33] J. Chen, Y. Jiang, T.-S. Chang et al. Detection of Barrett’s neoplasia with a near-infrared fluorescent heterodimeric peptide. Endoscopy, 54, 1198-1204(2022).
[34] T. D. Menge, J. S. Durgin, S. M. Hrycaj et al. Utility of GLI1 RNA chromogenic in situ hybridization in distinguishing basal cell carcinoma from histopathologic mimics. Mod. Pathol., 10, 100265(2023).
Get Citation
Copy Citation Text
Hua Mao, Linfeng Fan, Liyun Huang, Min Lu, Shaoqin Jin, Songtao Xiang. A potential strategy for colorectal tumor diagnosis: Polarized light imaging technology[J]. Journal of Innovative Optical Health Sciences, 2025, 18(2): 2543002
Category: Research Articles
Received: Sep. 26, 2024
Accepted: Nov. 19, 2024
Published Online: Apr. 7, 2025
The Author Email: Hua Mao (huam@smu.edu.cn)