Infrared and Laser Engineering, Volume. 50, Issue 11, 20210124(2021)
Performance of Measurement Device Independent Quantum Key Distribution on flight repeater platform
[1] [1] Bent C H, Brassard G. Quantum cryptography: public key distribution coin tossing [C]Proceedings of the IEEE International Conference on Computers, Systems Signal Processing, 1984, 560: 175–179.
[2] Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography[J]. Review of Modern Physics, 74, 145(2002).
[3] Scarani V, Bechmann-Pasquinucci H, Cerf N J, et al. The security of practical quantum key distribution[J]. Review of Modern Physics, 81, 1301(2009).
[4] Guo G C. Research status and future of quantum information technology[J]. Sci Sin Inform, 50, 121-132(2020).
[5] Wu Zhongbo, Yi Jianqiang. Cooperative communication relay selection method for UVA formation support networks[J]. Acta Aeronautica et Astronautica Sinica, 41, 187-194(2020).
[6] [6] Nauerth S, Moll F, Rau M, et al. Air to ground quantum key distribution [C]Proceedings of SPIE, 2012, 8518: 85180D.
[7] Bourgoin J P, Higgins B L, Gibov N, et al. Free-space quantum key distribution to a moving receiver[J]. Optics Express, 23, 33437-33447(2015).
[8] Pugh C J, Kaiser S, Bourgoin J P, et al. Airborne demonstration of a quantum key distribution receiver payload[J]. Quantum Science and Technology, 2, 024009(2017).
[9] Lo H K, Curty M, Qi B. Measurement device independent quantum key distribution[J]. Physical Review Letters, 108, 130503(2012).
[10] Huang J Z, Yin Z Q, Chen W, et al. A survey on device-independent quantum communications[J]. China Communications, 1-10(2013).
[11] Yin H L, Chen T Y, Yu Z W, et al. Measurement device independent quantum key distribution over 404 km optical fiber[J]. Physical Review Letters, 117, 190501(2016).
[12] [12] Ma X F, Razav M. Alternative schemes f measurementdeviceindependent quantum key distribution [J]. Physical Review A, 2012, 86(6): 38183821.
[13] Cao Y, Li Y H, Yang K X, et al. Long-distance free-space measurement-device-independent quantum key distribution[J]. Physical Review Letter, 125, 260503-260509(2020).
[14] Ke Z J, Wang Y T, Yu S, et al. Detection and quantification of entanglement with measurement-device-independent and universal entanglement witness[J]. Chin Phys B, 8, 080301(2020).
[15] Wang C, Yin Z Q, Wang S, et al. Measurement-device-independent quantum key distribution robust against environmental disturbances[J]. Optica, 9, 1016-1023(2017).
[16] Rubenok A, Slater J A, Chan P, et al. Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks[J]. Physical Review Letters, 9, 130501(2013).
[17] Liu H J. Current situation and trend of USA communication relay[J]. Airborne Missile, 39-44(2017).
[18] Guan Z F. Current status and trend of US military UA communication system[J]. Communications Technology, 47, 1109-1113(2014).
[19] Ma X F, Qi B, Zhao Y, et al. Practical decoy state for quantum key distribution[J]. Physical Review A, 72, 012326-012341(2005).
[20] Yu Z W, Zhou Y H, Wang X B. Three-intensity decoy state method for device independent quantum key distribution[J]. Physical Review A, 88, 019901(2013).
[21] Dong C, Zhao S H, Zhao W H, et al. Analysis of measurement device independent quantum key distribution with an asymmetric channel transmittance efficiency[J]. Acta Physical Sinica, 63, 030302(2014).
[22] Yang R, Li Y X, Meng W, et al. Channel characteristics of continuous variable quantum communication system on aviation platform[J]. Acta Optica Sinica, 38, 0927002(2018).
[23] Han L Q, Wang Q, Katsunori S. Performance of free space optical communication over gamma-gamma atmosphere turbulence[J]. Infrared and Laser Engineering, 40, 1318-1322(2011).
[24] Liu T, Zhu C, Sun C Y, et al. Influences of different weather conditions on performance of free-space quantum communication system[J]. Acta Optica Sinica, 14, 0227001(2020).
[25] Cao Minghua, Hu Qiu, Wang Huiqin, et al. Atmospheric optical communications channel estimation employing superimposed training sequence under sand-dust weather conditions[J]. Infrared and Laser Engineering, S2, S218002(2019).
[26] [26] Kim I I, McArthur B, Kevaar E J. Comparison of laser beam propagation at 785 nm 1550 nm in fog haze f optical wireless communications [C]Proceedings of SPIE, 2001, 4214: 2637.
[27] Khaleel A I, Tawfeeq S K. Key rate estimation of measurement-device-independent quantum key distribution protocol in satellite-earth and intersatellite links[J]. International Journal of Quantum Information, 16, 1850027(2018).
[28] Zhang Guangyu, Yu Siyuan, Ma Jing, et al. Influence of background light on quantum bit error rate in satellite-to-ground quantum key distribution[J]. Opto-Electronic Engineering, 34, 126-129(2018).
[29] [29] Zhang Peng. Research on the perfmance of practical quantum key distribution system [D]. Beijing: Beijing University of Posts Telecommunications, 2019. (in Chinese)
[30] [30] Song Tingting. Finite key security analysis of quantum key distribution protocols [D]. Beijing: Beijing University of Posts Telecommunications, 2014. (in Chinese)
[31] [31] Xu F H, Xu H, Lo H K. Protocol choice parameter optimization in decoystate measurementdevice independent quantum key distribution [J]. Physical Review A, 2014, 89(5): 38463855.
[32] Wang Qin, Chen Yipeng. Application and research of machine learning in quantum secure communication[J]. Journal of Nanjing University of Posts and Telecommunications, 40, 141-157(2020).
Get Citation
Copy Citation Text
Tianxiu Li, Lei Shi, Jiahao Li, Junhui Wang. Performance of Measurement Device Independent Quantum Key Distribution on flight repeater platform[J]. Infrared and Laser Engineering, 2021, 50(11): 20210124
Category: Optical communication and sensing
Received: Feb. 26, 2021
Accepted: --
Published Online: Dec. 7, 2021
The Author Email: