Chinese Journal of Liquid Crystals and Displays, Volume. 35, Issue 7, 662(2020)

Entropy-driven liquid crystalline self-assembly of inorganic nanorods

LIU Xiao-duo* and XIE Yong
Author Affiliations
  • [in Chinese]
  • show less
    References(184)

    [1] [1] JIA H P. Who will win the future of display technologies? [J]. National Science Review, 2018, 5(3): 427-431.

              JIA H P. Who will win the future of display technologies? [J]. National Science Review, 2018, 5(3): 427-431.

    [2] [2] IM Y, BYUN S Y, KIM J H, et al. Recent progress in high-efficiency blue-light-emitting materials for organic light-emitting diodes [J]. Advanced Functional Materials, 2017, 27(13): 1603007.

              IM Y, BYUN S Y, KIM J H, et al. Recent progress in high-efficiency blue-light-emitting materials for organic light-emitting diodes [J]. Advanced Functional Materials, 2017, 27(13): 1603007.

    [3] [3] CHEN H W, LEE J H, LIN B Y, et al. Liquid crystal display and organic light-emitting diode display: Present status and future perspectives [J]. Light: Science & Applications, 2018, 7(3): 17168.

              CHEN H W, LEE J H, LIN B Y, et al. Liquid crystal display and organic light-emitting diode display: Present status and future perspectives [J]. Light: Science & Applications, 2018, 7(3): 17168.

    [4] [4] SMALYUKH I I. Liquid crystal colloids [J]. Annual Review of Condensed Matter Physics, 2018, 9: 207-226.

              SMALYUKH I I. Liquid crystal colloids [J]. Annual Review of Condensed Matter Physics, 2018, 9: 207-226.

    [5] [5] LI H Z, QIU C L, REN S J, et al. Na+-gated water-conducting nanochannels for boosting CO2 conversion to liquid fuels [J]. Science, 2020, 367(6478): 667-671

              LI H Z, QIU C L, REN S J, et al. Na+-gated water-conducting nanochannels for boosting CO2 conversion to liquid fuels [J]. Science, 2020, 367(6478): 667-671

    [6] [6] FREISER M J. Ordered states of a nematic liquid [J]. Physical Review Letters, 1970, 24(19): 1041-1043.

              FREISER M J. Ordered states of a nematic liquid [J]. Physical Review Letters, 1970, 24(19): 1041-1043.

    [7] [7] ALBEN R. Phase transitions in a fluid of biaxial particles [J].Physical Review Letters, 1973, 30(17): 778-781.

              ALBEN R. Phase transitions in a fluid of biaxial particles [J].Physical Review Letters, 1973, 30(17): 778-781.

    [8] [8] STRALEY J P. Ordered phases of a liquid of biaxial particles [J]. Physical Review A, 1974, 10(5): 1881-1887.

              STRALEY J P. Ordered phases of a liquid of biaxial particles [J]. Physical Review A, 1974, 10(5): 1881-1887.

    [9] [9] VAN DEN POL E, PETUKHOV A V, THIES-WEESIE D M E, et al. Experimental realization of biaxial liquid crystal phases in colloidal dispersions of boardlike particles [J]. Physical Review Letters, 2009, 103(25): 258301.

              VAN DEN POL E, PETUKHOV A V, THIES-WEESIE D M E, et al. Experimental realization of biaxial liquid crystal phases in colloidal dispersions of boardlike particles [J]. Physical Review Letters, 2009, 103(25): 258301.

    [10] [10] VAN BRUGGEN M P B, LEKKERKERKER H N W. Metastability and multistability: gelation and liquid crystal formation in suspensions of colloidal rods [J]. Langmuir, 2002, 18(19): 7141-7145.

              VAN BRUGGEN M P B, LEKKERKERKER H N W. Metastability and multistability: gelation and liquid crystal formation in suspensions of colloidal rods [J]. Langmuir, 2002, 18(19): 7141-7145.

    [11] [11] ZHAO N N, YAN L M, ZHAO X Y, et al. Versatile types of organic/inorganic nanohybrids: from strategic design to biomedical applications [J]. Chemical Reviews, 2019, 119(3): 1666-1762.

              ZHAO N N, YAN L M, ZHAO X Y, et al. Versatile types of organic/inorganic nanohybrids: from strategic design to biomedical applications [J]. Chemical Reviews, 2019, 119(3): 1666-1762.

    [12] [12] CHAUDHARI P, LACEY J, DOYLE J, et al. Atomic-beam alignment of inorganic materials for liquid-crystal displays [J]. Nature, 2001, 411(6833): 56-59.

              CHAUDHARI P, LACEY J, DOYLE J, et al. Atomic-beam alignment of inorganic materials for liquid-crystal displays [J]. Nature, 2001, 411(6833): 56-59.

    [13] [13] ONG L L, HANIKEL N, YAGHI O K, et al. Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components [J]. Nature, 2017, 552(7683): 72-77.

              ONG L L, HANIKEL N, YAGHI O K, et al. Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components [J]. Nature, 2017, 552(7683): 72-77.

    [14] [14] FREEMAN R, HAN M,LVAREZ Z, et al. Reversible self-assembly of superstructured networks [J]. Science, 2018, 362(6416): 808-813

              FREEMAN R, HAN M,LVAREZ Z, et al. Reversible self-assembly of superstructured networks [J]. Science, 2018, 362(6416): 808-813

    [15] [15] SERVICE F R. How far can we push chemical self-assembly? [J]. Science, 2005, 309(5731): 95.

              SERVICE F R. How far can we push chemical self-assembly? [J]. Science, 2005, 309(5731): 95.

    [16] [16] FAN J A, WU C, BAO K, et al. Self-assembled plasmonic nanoparticle clusters [J]. Science, 2010, 328(5982): 1135-1138.

              FAN J A, WU C, BAO K, et al. Self-assembled plasmonic nanoparticle clusters [J]. Science, 2010, 328(5982): 1135-1138.

    [17] [17] ONSAGER L. The effects of shape on the interaction of colloidal particles [J]. Annals of the New York Academy of Science, 1949, 51(4): 627-659.

              ONSAGER L. The effects of shape on the interaction of colloidal particles [J]. Annals of the New York Academy of Science, 1949, 51(4): 627-659.

    [18] [18] ZOCHER H. ber freiwillige strukturbildung in solen. (Eine neue art anisotrop flüssiger medien.) [J].Zeitschrift Für Anorganische Und Allgemeine Chemie, 1925, 147(1): 91-110.

              ZOCHER H. ber freiwillige strukturbildung in solen. (Eine neue art anisotrop flüssiger medien.) [J].Zeitschrift Für Anorganische Und Allgemeine Chemie, 1925, 147(1): 91-110.

    [19] [19] JANA N R, GEARHEART L, MURPHY C J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template [J]. Advanced Materials, 2001, 13(18): 1389-1393.

              JANA N R, GEARHEART L, MURPHY C J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template [J]. Advanced Materials, 2001, 13(18): 1389-1393.

    [20] [20] BISHOP K J M, WILMER C E, SOH S, et al. Nanoscale forces and their uses in self-assembly [J]. Small, 2009, 5(14): 1600-1630.

              BISHOP K J M, WILMER C E, SOH S, et al. Nanoscale forces and their uses in self-assembly [J]. Small, 2009, 5(14): 1600-1630.

    [21] [21] LIU Q K, SENYUK B, TANG J W, et al. Plasmonic complex fluids of nematiclike and helicoidal self-assemblies of gold nanorods with a negative order parameter [J]. Physical Review Letters, 2012, 109(8): 088301.

              LIU Q K, SENYUK B, TANG J W, et al. Plasmonic complex fluids of nematiclike and helicoidal self-assemblies of gold nanorods with a negative order parameter [J]. Physical Review Letters, 2012, 109(8): 088301.

    [22] [22] JIANG G Q, HORE M J A, GAM S, et al. Gold nanorods dispersed in homopolymer films: Optical properties controlled by self-assembly and percolation of nanorods [J]. Acs Nano, 2012, 6(2): 1578-1588.

              JIANG G Q, HORE M J A, GAM S, et al. Gold nanorods dispersed in homopolymer films: Optical properties controlled by self-assembly and percolation of nanorods [J]. Acs Nano, 2012, 6(2): 1578-1588.

    [23] [23] KALSIN A M, KOWALCZYK B, WESSON P, et al. Studying the thermodynamics of surface reactions on nanoparticles by electrostatic titrations [J]. Journal of the American Chemical Society, 2007, 129(21): 6664-6665.

              KALSIN A M, KOWALCZYK B, WESSON P, et al. Studying the thermodynamics of surface reactions on nanoparticles by electrostatic titrations [J]. Journal of the American Chemical Society, 2007, 129(21): 6664-6665.

    [24] [24] DONG Y H, LAAKSONEN A, CAO W, et al. AFM study of pH-ependent adhesion of single protein to TiO2 surface [J]. Advanced Materials Interfaces, 2019, 6(14): 1900411.

              DONG Y H, LAAKSONEN A, CAO W, et al. AFM study of pH-ependent adhesion of single protein to TiO2 surface [J]. Advanced Materials Interfaces, 2019, 6(14): 1900411.

    [25] [25] ZHENG Y H, ROSA L, THAI T, et al. Asymmetric gold nanodimer arrays: electrostatic self-assembly and SERS activity [J]. Journal of Materials Chemistry A, 2015, 3(1): 240-249.

              ZHENG Y H, ROSA L, THAI T, et al. Asymmetric gold nanodimer arrays: electrostatic self-assembly and SERS activity [J]. Journal of Materials Chemistry A, 2015, 3(1): 240-249.

    [26] [26] MURRAY C B, KAGAN C R, BAWENDI M G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices [J]. Science, 1995, 270(5240): 1335-1338.

              MURRAY C B, KAGAN C R, BAWENDI M G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices [J]. Science, 1995, 270(5240): 1335-1338.

    [27] [27] KALSIN A M, FIALKOWSKI M, PASZEWSKI M, et al. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice [J]. Science, 2006, 312(5772): 420-424.

              KALSIN A M, FIALKOWSKI M, PASZEWSKI M, et al. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice [J]. Science, 2006, 312(5772): 420-424.

    [28] [28] SASAKI E, DRAGOMAN R M, MANTRI S, et al. Self-assembly of proteinaceous shells around positively charged gold nanomaterials enhances colloidal stability in high-ionic-strength buffers [J]. Chembiochem, 2020, 21(1/2): 74-79.

              SASAKI E, DRAGOMAN R M, MANTRI S, et al. Self-assembly of proteinaceous shells around positively charged gold nanomaterials enhances colloidal stability in high-ionic-strength buffers [J]. Chembiochem, 2020, 21(1/2): 74-79.

    [29] [29] BATES M A, FRENKEL D. Phase behavior of two-dimensional hard rod fluids [J]. The Journal of Chemical Physics, 2000, 112(22): 10034-10041.

              BATES M A, FRENKEL D. Phase behavior of two-dimensional hard rod fluids [J]. The Journal of Chemical Physics, 2000, 112(22): 10034-10041.

    [30] [30] AUER S, FRENKEL D. Numerical prediction of absolute crystallization rates in hard-sphere colloids [J].The Journal of Chemical Physics, 2004, 120(6): 3015-3029.

              AUER S, FRENKEL D. Numerical prediction of absolute crystallization rates in hard-sphere colloids [J].The Journal of Chemical Physics, 2004, 120(6): 3015-3029.

    [31] [31] YE B, QIAN G D, FAN X P, et al. Self-assembled superlattices from colloidal TiO2 nanorods [J]. Current Nanoscience, 2010, 6(3): 262-268.

              YE B, QIAN G D, FAN X P, et al. Self-assembled superlattices from colloidal TiO2 nanorods [J]. Current Nanoscience, 2010, 6(3): 262-268.

    [32] [32] MURPHY C J, JANA N R. Controlling the aspect ratio of inorganic nanorods and nanowires [J]. Advanced Materials, 2002, 14(1): 80-82.

              MURPHY C J, JANA N R. Controlling the aspect ratio of inorganic nanorods and nanowires [J]. Advanced Materials, 2002, 14(1): 80-82.

    [33] [33] KHANAL B P, ZUBAREV E R. Rings of nanorods [J]. Angewandte Chemie, 2007, 46(13): 2195-2198.

              KHANAL B P, ZUBAREV E R. Rings of nanorods [J]. Angewandte Chemie, 2007, 46(13): 2195-2198.

    [34] [34] WEI W B, BAI F, FAN H Y. Surfactant-assisted cooperative self-assembly of nanoparticles into active nanostructures [J]. IScience, 2019, 11: 272-293.

              WEI W B, BAI F, FAN H Y. Surfactant-assisted cooperative self-assembly of nanoparticles into active nanostructures [J]. IScience, 2019, 11: 272-293.

    [35] [35] ASAKURA S, OOSAWA F. On interaction between two bodies immersed in a solution of macromolecules [J].The Journal of Chemical Physics, 1954, 22(7): 1255-1256.

              ASAKURA S, OOSAWA F. On interaction between two bodies immersed in a solution of macromolecules [J].The Journal of Chemical Physics, 1954, 22(7): 1255-1256.

    [36] [36] ABBAS S, LODGE T P. Depletion interactions: a new control parameter for the self-assembly of diblock copolymer micelles [J]. Physical Review Letters, 2007, 99(13): 137802.

              ABBAS S, LODGE T P. Depletion interactions: a new control parameter for the self-assembly of diblock copolymer micelles [J]. Physical Review Letters, 2007, 99(13): 137802.

    [37] [37] KAPLAN P D, ROUKE J L, YODH A G, et al. Entropically driven surface phase separation in binary colloidal mixtures [J]. Physical Review Letters, 1994, 72(4): 582-585.

              KAPLAN P D, ROUKE J L, YODH A G, et al. Entropically driven surface phase separation in binary colloidal mixtures [J]. Physical Review Letters, 1994, 72(4): 582-585.

    [38] [38] ZHAO K, MASON T G. Directing colloidal self-assembly through roughness-controlled depletion attractions [J]. Physical Review Letters, 2007, 99(26): 268301.

              ZHAO K, MASON T G. Directing colloidal self-assembly through roughness-controlled depletion attractions [J]. Physical Review Letters, 2007, 99(26): 268301.

    [39] [39] ITO K, YOSHIDA H, ISE N. Void structure in colloidal dispersions [J]. Science, 1994, 263(5143): 66-68.

              ITO K, YOSHIDA H, ISE N. Void structure in colloidal dispersions [J]. Science, 1994, 263(5143): 66-68.

    [40] [40] LALATONNE Y, MOTTE L, RICHARDI J,et al. Influence of short-range interactions on the mesoscopic organization of magnetic nanocrystals [J]. Physical Review E, 2005, 71(1): 011404.

              LALATONNE Y, MOTTE L, RICHARDI J,et al. Influence of short-range interactions on the mesoscopic organization of magnetic nanocrystals [J]. Physical Review E, 2005, 71(1): 011404.

    [41] [41] FINNEGAN J R, LUNN D J, GOULD O E C, et al. Gradient crystallization-driven self-assembly: cylindrical micelles with “patchy” segmented coronas via the coassembly of linear and brush block copolymers [J]. Journal of the American Chemical Society, 2014, 136(39): 13835-13844.

              FINNEGAN J R, LUNN D J, GOULD O E C, et al. Gradient crystallization-driven self-assembly: cylindrical micelles with “patchy” segmented coronas via the coassembly of linear and brush block copolymers [J]. Journal of the American Chemical Society, 2014, 136(39): 13835-13844.

    [42] [42] BICKELHAUPT F M, BAERENDS E J. The case for steric repulsion causing the staggered conformation of ethane [J]. Angewandte Chemie, 2003, 42(35): 4183-4188.

              BICKELHAUPT F M, BAERENDS E J. The case for steric repulsion causing the staggered conformation of ethane [J]. Angewandte Chemie, 2003, 42(35): 4183-4188.

    [43] [43] GRZELCZAK M, SNCHEZ-IGLESIAS A, MEZERJI H H, et al. Steric hindrance induces crosslike self-assembly of gold nanodumbbells [J]. Nano Letters, 2012, 12(8): 4380-4384.

              GRZELCZAK M, SNCHEZ-IGLESIAS A, MEZERJI H H, et al. Steric hindrance induces crosslike self-assembly of gold nanodumbbells [J]. Nano Letters, 2012, 12(8): 4380-4384.

    [44] [44] SHARMA V, PARK K, SRINIVASARAO M. Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly [J]. Materials Science and Engineering: R: Reports, 2009, 65(1/3): 1-38.

              SHARMA V, PARK K, SRINIVASARAO M. Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly [J]. Materials Science and Engineering: R: Reports, 2009, 65(1/3): 1-38.

    [45] [45] CHOI J H, WANG H, OH S J, et al. Exploiting the colloidal nanocrystal library to construct electronic devices [J]. Science, 2016, 352(6282): 205-208.

              CHOI J H, WANG H, OH S J, et al. Exploiting the colloidal nanocrystal library to construct electronic devices [J]. Science, 2016, 352(6282): 205-208.

    [46] [46] TORTORA L, PARK H S, KANG S W, et al. Self-assembly, condensation, and order in aqueous lyotropic chromonic liquid crystals crowded with additives [J]. Soft Matter, 2008, 6(17): 4157-4167.

              TORTORA L, PARK H S, KANG S W, et al. Self-assembly, condensation, and order in aqueous lyotropic chromonic liquid crystals crowded with additives [J]. Soft Matter, 2008, 6(17): 4157-4167.

    [47] [47] XIE Y, LI Y Y, WEI G Q, et al. Liquid crystal self-assembly of upconversion nanorods enriched by depletion forces for mesostructured material preparation [J]. Nanoscale, 2018, 10(9): 4218-4227.

              XIE Y, LI Y Y, WEI G Q, et al. Liquid crystal self-assembly of upconversion nanorods enriched by depletion forces for mesostructured material preparation [J]. Nanoscale, 2018, 10(9): 4218-4227.

    [48] [48] REN Z M, CHEN C, HU R, et al. Two-step self-assembly and lyotropic liquid crystal behavior of TiO2 nanorods [J]. Journal of Nanomaterials, 2012, 2012: 180989.

              REN Z M, CHEN C, HU R, et al. Two-step self-assembly and lyotropic liquid crystal behavior of TiO2 nanorods [J]. Journal of Nanomaterials, 2012, 2012: 180989.

    [49] [49] LIU Q K, CAMPBELL M G, EVANS J S, et al. Orientationally ordered colloidal co-dispersions of gold nanorods and cellulose nanocrystals [J]. Advanced Materials, 2014, 26(42): 7178-7184.

              LIU Q K, CAMPBELL M G, EVANS J S, et al. Orientationally ordered colloidal co-dispersions of gold nanorods and cellulose nanocrystals [J]. Advanced Materials, 2014, 26(42): 7178-7184.

    [50] [50] LI L, DENG S X, WANG H, et al. A SERS fiber probe fabricated by layer-by-layer assembly of silver sphere nanoparticles and nanorods with a greatly enhanced sensitivity for remote sensing [J]. Nanotechnology, 2019, 30(25): 255503.

              LI L, DENG S X, WANG H, et al. A SERS fiber probe fabricated by layer-by-layer assembly of silver sphere nanoparticles and nanorods with a greatly enhanced sensitivity for remote sensing [J]. Nanotechnology, 2019, 30(25): 255503.

    [51] [51] KINKEAD B, HEGMANN T.Effects of size, capping agent, and concentration of CdSe and CdTe quantum dots doped into a nematic liquid crystal on the optical and electro-optic properties of the final colloidal liquid crystal mixture [J]. Journal of Materials Chemistry, 2010, 20(3): 448-458.

              KINKEAD B, HEGMANN T.Effects of size, capping agent, and concentration of CdSe and CdTe quantum dots doped into a nematic liquid crystal on the optical and electro-optic properties of the final colloidal liquid crystal mixture [J]. Journal of Materials Chemistry, 2010, 20(3): 448-458.

    [52] [52] YAN P, LI Z J. Synthesis of bifunctional graphene quantum dots and its application in fluorescence detection of pH and cell imaging [J]. Chinese Journal of Analytical Chemistry, 2018, 46(5): 670-677. (in Chinese)

              YAN P, LI Z J. Synthesis of bifunctional graphene quantum dots and its application in fluorescence detection of pH and cell imaging [J]. Chinese Journal of Analytical Chemistry, 2018, 46(5): 670-677. (in Chinese)

    [53] [53] ZOU X B, SHI Y Q, ZHENG Y,et al. Detection of arginine by AuNPs/CQDs nanoprobes based on fluorescence resonance energy transfer [J]. Chinese Journal of Analytical Chemistry, 2018, 46(6): 960-968. (in Chinese)

              ZOU X B, SHI Y Q, ZHENG Y,et al. Detection of arginine by AuNPs/CQDs nanoprobes based on fluorescence resonance energy transfer [J]. Chinese Journal of Analytical Chemistry, 2018, 46(6): 960-968. (in Chinese)

    [54] [54] WANG M L, SUN Y N, GUO J Y, et al. Amplification effect of CdS quantum dots on electrogenerated chemiluminescence of Ru(bpy)32+ and its application in determination of catechol [J]. Chinese Journal of Analytical Chemistry, 2018, 46(5): 780-786. (in Chinese)

              WANG M L, SUN Y N, GUO J Y, et al. Amplification effect of CdS quantum dots on electrogenerated chemiluminescence of Ru(bpy)32+ and its application in determination of catechol [J]. Chinese Journal of Analytical Chemistry, 2018, 46(5): 780-786. (in Chinese)

    [55] [55] CHEN X, CHEN L, CHEN Y W. Self-assembly of discotic liquid crystal decorated ZnO nanoparticles for efficient hybrid solar cells [J]. RSC Advances, 2014, 4(7): 3627-3632.

              CHEN X, CHEN L, CHEN Y W. Self-assembly of discotic liquid crystal decorated ZnO nanoparticles for efficient hybrid solar cells [J]. RSC Advances, 2014, 4(7): 3627-3632.

    [56] [56] WANG F Z, ZHOU Y S, PAN X H, et al. Enhanced photocatalytic properties of ZnO nanorods by electrostatic self-assembly with reduced graphene oxide [J]. Physical Chemistry Chemical Physics, 2018, 20(10): 6959-6969.

              WANG F Z, ZHOU Y S, PAN X H, et al. Enhanced photocatalytic properties of ZnO nanorods by electrostatic self-assembly with reduced graphene oxide [J]. Physical Chemistry Chemical Physics, 2018, 20(10): 6959-6969.

    [57] [57] PASTEUR L. On the relations that can exist between crystalline form, and chemical composition, and the sense of rotary polarization [J]. Annales de Chimie et de Physique, 1848, 24: 442-459.

              PASTEUR L. On the relations that can exist between crystalline form, and chemical composition, and the sense of rotary polarization [J]. Annales de Chimie et de Physique, 1848, 24: 442-459.

    [58] [58] BISOYI H K, LI Q. Light-directed dynamic chirality inversion in functional self-organized helical superstructures [J]. Angewandte Chemie International Edition, 2016, 55(9): 2994-3010.

              BISOYI H K, LI Q. Light-directed dynamic chirality inversion in functional self-organized helical superstructures [J]. Angewandte Chemie International Edition, 2016, 55(9): 2994-3010.

    [59] [59] CHEN P, WEI B Y, HU W, et al. Liquid-crystal-mediated geometric phase: from transmissive to broadband reflective planar optics [J]. Advanced Materials, 2019, doi: 10.1002/adma.201903665.

              CHEN P, WEI B Y, HU W, et al. Liquid-crystal-mediated geometric phase: from transmissive to broadband reflective planar optics [J]. Advanced Materials, 2019, doi: 10.1002/adma.201903665.

    [60] [60] POP F, ZIGON N, AVARVARI N. Main-group-based electro-and photoactive chiral materials [J].Chemical Reviews, 2019, 119(14): 8435-8478.

              POP F, ZIGON N, AVARVARI N. Main-group-based electro-and photoactive chiral materials [J].Chemical Reviews, 2019, 119(14): 8435-8478.

    [61] [61] FU J X, NAYANI K, PARK J O, et al. Spontaneous emergence of twist and the formation of a monodomain in lyotropic chromonic liquid crystals confined to capillaries [J]. NPG Asia Materials, 2017, 9(6): e393.

              FU J X, NAYANI K, PARK J O, et al. Spontaneous emergence of twist and the formation of a monodomain in lyotropic chromonic liquid crystals confined to capillaries [J]. NPG Asia Materials, 2017, 9(6): e393.

    [62] [62] NAYANI K, FU J X, CHANG R, et al. Using chiral tactoids as optical probes to study the aggregation behavior of chromonics [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(15): 3826-3831.

              NAYANI K, FU J X, CHANG R, et al. Using chiral tactoids as optical probes to study the aggregation behavior of chromonics [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(15): 3826-3831.

    [63] [63] CHENG G Q, YU W, LIU K, et al. Entropy-driven self-assembly of chiral nematic liquid crystalline phases of agnr@Cu2O hyper branched coaxial nanorods and thickness-dependent handedness transition [J]. Nano Research, 2017, 11(2): 1018-1028.

              CHENG G Q, YU W, LIU K, et al. Entropy-driven self-assembly of chiral nematic liquid crystalline phases of agnr@Cu2O hyper branched coaxial nanorods and thickness-dependent handedness transition [J]. Nano Research, 2017, 11(2): 1018-1028.

    [64] [64] SANG Y T, HAN J L, ZHAO T H, et al. Circularly polarized luminescence in nanoassemblies: generation, amplification, and application [J]. Advanced Materials, 2019, doi: 10.1002/adma.201900110.

              SANG Y T, HAN J L, ZHAO T H, et al. Circularly polarized luminescence in nanoassemblies: generation, amplification, and application [J]. Advanced Materials, 2019, doi: 10.1002/adma.201900110.

    [65] [65] ZOLA R S, BISOYI H K, WANG H, et al. Dynamic control of light direction enabled by stimuli-responsive liquid crystal gratings [J]. Advanced Materials, 2019, 31(27): 1806172.

              ZOLA R S, BISOYI H K, WANG H, et al. Dynamic control of light direction enabled by stimuli-responsive liquid crystal gratings [J]. Advanced Materials, 2019, 31(27): 1806172.

    [66] [66] BIAN K F, SCHUNK H, YE D M, et al. Formation of self-assembled gold nanoparticle supercrystals with facet-dependent surface plasmonic coupling [J]. Nature Communications, 2018, 9(1): 2365.

              BIAN K F, SCHUNK H, YE D M, et al. Formation of self-assembled gold nanoparticle supercrystals with facet-dependent surface plasmonic coupling [J]. Nature Communications, 2018, 9(1): 2365.

    [67] [67] GONG J X, NEWMAN R S, ENGEL M, et al. Shape-dependent ordering of gold nanocrystals into large-scale superlattices [J]. Nature Communications, 2017, 8(1): 14038.

              GONG J X, NEWMAN R S, ENGEL M, et al. Shape-dependent ordering of gold nanocrystals into large-scale superlattices [J]. Nature Communications, 2017, 8(1): 14038.

    [68] [68] GONG J X, LI G D, TANG Z Y. Self-assembly of noble metal nanocrystals: fabrication, optical property, and application [J]. Nano Today, 2012, 7(6): 564-585.

              GONG J X, LI G D, TANG Z Y. Self-assembly of noble metal nanocrystals: fabrication, optical property, and application [J]. Nano Today, 2012, 7(6): 564-585.

    [69] [69] HALAS N J, LAL S, CHANG W S, et al. Plasmons in strongly coupled metallic nanostructures [J]. Chemical Reviews, 2012, 111(6): 3913-3961.

              HALAS N J, LAL S, CHANG W S, et al. Plasmons in strongly coupled metallic nanostructures [J]. Chemical Reviews, 2012, 111(6): 3913-3961.

    [70] [70] TABOR C, VAN HAUTE D, EL-SAYED M A. Effect of orientation on plasmonic coupling between gold nanorods [J]. ACS Nano, 2019, 3(11): 3670-3678.

              TABOR C, VAN HAUTE D, EL-SAYED M A. Effect of orientation on plasmonic coupling between gold nanorods [J]. ACS Nano, 2019, 3(11): 3670-3678.

    [71] [71] FUNSTON A M, NOVO C, DAVIS T J, et al. Plasmon coupling of gold nanorods at short distances and in different geometries [J]. Nano Letters, 2009, 9(4): 1651-1658.

              FUNSTON A M, NOVO C, DAVIS T J, et al. Plasmon coupling of gold nanorods at short distances and in different geometries [J]. Nano Letters, 2009, 9(4): 1651-1658.

    [72] [72] WANG L, JIN Y, DENG J,et al. Gold nanorods-based fret assay for sensitive detection of Pb2+ using 8-17dnazyme [J]. Analyst, 2011, 136(24): 5169-5174.

              WANG L, JIN Y, DENG J,et al. Gold nanorods-based fret assay for sensitive detection of Pb2+ using 8-17dnazyme [J]. Analyst, 2011, 136(24): 5169-5174.

    [73] [73] ZENG Q H, ZHANG Y L, LIU X M, et al. Multiple homogeneous immunoassays based on a quantum dots-gold nanorods fret nanoplatform [J]. Chemical Communications, 2012, 48(12): 1781-1783.

              ZENG Q H, ZHANG Y L, LIU X M, et al. Multiple homogeneous immunoassays based on a quantum dots-gold nanorods fret nanoplatform [J]. Chemical Communications, 2012, 48(12): 1781-1783.

    [74] [74] LIU G L, FENG D Q, QIAN Y L, et al. Construction of FRET biosensor for off-on detection of lead ions based on carbon dots and gold nanorods [J]. Talanta, 2019, 201: 90-95.

              LIU G L, FENG D Q, QIAN Y L, et al. Construction of FRET biosensor for off-on detection of lead ions based on carbon dots and gold nanorods [J]. Talanta, 2019, 201: 90-95.

    [75] [75] WU M M, WANG X Y, WANG K, et al. Sequence-specific detection of cytosine methylation in DNA via the FRET mechanism between upconversion nanoparticles and gold nanorods [J]. Chemical Communications, 2016, 52(54): 8377-8380.

              WU M M, WANG X Y, WANG K, et al. Sequence-specific detection of cytosine methylation in DNA via the FRET mechanism between upconversion nanoparticles and gold nanorods [J]. Chemical Communications, 2016, 52(54): 8377-8380.

    [76] [76] DEEGAN R D, BAKAJIN O, DUPONT T F, et al. Capillary flow as the cause of ring stains from dried liquid drops [J]. Nature, 1997, 389(6653): 827-829.

              DEEGAN R D, BAKAJIN O, DUPONT T F, et al. Capillary flow as the cause of ring stains from dried liquid drops [J]. Nature, 1997, 389(6653): 827-829.

    [77] [77] XIE Y, GUO S M, GUO C F, et al. Controllable two-stage droplet evaporation method and its nanoparticle self-assembly mechanism [J]. Langmuir, 2013, 29(21): 6232-6241.

              XIE Y, GUO S M, GUO C F, et al. Controllable two-stage droplet evaporation method and its nanoparticle self-assembly mechanism [J]. Langmuir, 2013, 29(21): 6232-6241.

    [78] [78] HUANG Y, ZHANG X, RINGE E,et al. Tunable lattice coupling of multipole plasmon modes and near-field enhancement in closely spaced gold nanorod arrays [J]. Scientific Reports, 2016, 6(1): 23159.

              HUANG Y, ZHANG X, RINGE E,et al. Tunable lattice coupling of multipole plasmon modes and near-field enhancement in closely spaced gold nanorod arrays [J]. Scientific Reports, 2016, 6(1): 23159.

    [79] [79] REGUERA J, LANGER J,DE ABERASTURI D J, et al. Anisotropic metal nanoparticles for surface enhanced Raman scattering [J]. Chemical Society Reviews, 2017, 46(13): 3866-3885.

              REGUERA J, LANGER J,DE ABERASTURI D J, et al. Anisotropic metal nanoparticles for surface enhanced Raman scattering [J]. Chemical Society Reviews, 2017, 46(13): 3866-3885.

    [80] [80] WEI W B, WANG Y R, JI J J, et al. Fabrication of large-area arrays of vertically aligned gold nanorods [J]. Nano Letters, 2018, 18(7): 4467-4472.

              WEI W B, WANG Y R, JI J J, et al. Fabrication of large-area arrays of vertically aligned gold nanorods [J]. Nano Letters, 2018, 18(7): 4467-4472.

    [81] [81] XIE Y, GUO S M, JI Y L, et al. Self-assembly of gold nanorods into symmetric superlattices directed by OH-terminated hexa(ethylene glycol) alkanethiol [J]. Langmuir, 2011, 27(18): 11394-11400.

              XIE Y, GUO S M, JI Y L, et al. Self-assembly of gold nanorods into symmetric superlattices directed by OH-terminated hexa(ethylene glycol) alkanethiol [J]. Langmuir, 2011, 27(18): 11394-11400.

    [82] [82] GWO S,CHEN H Y, LIN M H, et al. Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics [J]. Chemical Society Reviews, 2016, 45(20): 5672-5716.

              GWO S,CHEN H Y, LIN M H, et al. Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics [J]. Chemical Society Reviews, 2016, 45(20): 5672-5716.

    [83] [83] ALVAREZ-PUEBLA R A, AGARWAL A, MANNA P, et al. Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(20): 8157-8161.

              ALVAREZ-PUEBLA R A, AGARWAL A, MANNA P, et al. Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(20): 8157-8161.

    [84] [84] POMPA P P, MARTIRADONNA L, TORRE A D, et al. Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control [J]. Nature Nanotechnology, 2006, 1(2): 126-130.

              POMPA P P, MARTIRADONNA L, TORRE A D, et al. Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control [J]. Nature Nanotechnology, 2006, 1(2): 126-130.

    [85] [85] PENG B, LI Z P, MUTLUGUN E, et al. Quantum dots on vertically aligned gold nanorod monolayer: Plasmon enhanced fluorescence [J]. Nanoscale, 2014, 6(11): 5592-5598.

              PENG B, LI Z P, MUTLUGUN E, et al. Quantum dots on vertically aligned gold nanorod monolayer: Plasmon enhanced fluorescence [J]. Nanoscale, 2014, 6(11): 5592-5598.

    [86] [86] XIE Y, JIA Y F, LIANG Y J, et al. Real-time observations on crystallization of gold nanorods into spiral or lamellar superlattices [J]. Chemical Communications, 2012, 48(15): 2128-2130.

              XIE Y, JIA Y F, LIANG Y J, et al. Real-time observations on crystallization of gold nanorods into spiral or lamellar superlattices [J]. Chemical Communications, 2012, 48(15): 2128-2130.

    [87] [87] XIE Y, LIANG Y J, CHEN D X, et al. Vortical superlattices in a gold nanorods’ self-assembled monolayer [J]. Nanoscale, 2014, 6(6): 3064-3068.

              XIE Y, LIANG Y J, CHEN D X, et al. Vortical superlattices in a gold nanorods’ self-assembled monolayer [J]. Nanoscale, 2014, 6(6): 3064-3068.

    [88] [88] LIANG Y J, XIE Y, CHEN D X, et al. Symmetry control of nanorod superlattice driven by a governing force [J]. Nature Communications, 2017, 8(1): 1410.

              LIANG Y J, XIE Y, CHEN D X, et al. Symmetry control of nanorod superlattice driven by a governing force [J]. Nature Communications, 2017, 8(1): 1410.

    [89] [89] LLOYD J A, LIU Y W, NG S H, et al. Self-assembly of spherical and rod-shaped nanoparticles with full positional control [J]. Nanoscale, 2019, 11(47): 22841-22848.

              LLOYD J A, LIU Y W, NG S H, et al. Self-assembly of spherical and rod-shaped nanoparticles with full positional control [J]. Nanoscale, 2019, 11(47): 22841-22848.

    [90] [90] SAU T K, MURPHY C J. Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes [J]. Langmuir, 2005, 21(7): 2923-2929.

              SAU T K, MURPHY C J. Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes [J]. Langmuir, 2005, 21(7): 2923-2929.

    [91] [91] BARRIGA H M G, HOLME M N, STEVENS M M. Cubosomes: the next generation of smart lipid nanoparticles? [J]. Angewandte Chemie International Edition, 2019, 58(10): 2958-2978.

              BARRIGA H M G, HOLME M N, STEVENS M M. Cubosomes: the next generation of smart lipid nanoparticles? [J]. Angewandte Chemie International Edition, 2019, 58(10): 2958-2978.

    [92] [92] MAYER M, SCHNEPF M J, KONIG T A F, et al. Colloidal self-assembly concepts for plasmonic metasurfaces [J]. Advanced Optical Materials, 2019, 7(1): 1800564.

              MAYER M, SCHNEPF M J, KONIG T A F, et al. Colloidal self-assembly concepts for plasmonic metasurfaces [J]. Advanced Optical Materials, 2019, 7(1): 1800564.

    Tools

    Get Citation

    Copy Citation Text

    LIU Xiao-duo, XIE Yong. Entropy-driven liquid crystalline self-assembly of inorganic nanorods[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(7): 662

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 4, 2020

    Accepted: --

    Published Online: Oct. 27, 2020

    The Author Email: LIU Xiao-duo (2596458949@buaa.edu.cn)

    DOI:10.37188/yjyxs20203507.0662

    Topics