Chinese Journal of Lasers, Volume. 44, Issue 5, 501004(2017)

Spectral Properties of Picosecond Fiber Laser System with 3.4 MW Peak Power

Bai Yang1,2、*, Zou Feng1,2, Wang Ziwei1,2, Wang Zhaokun1,2, Li Qiurui1, Qi Yunfeng1, He Bing1,3, and Zhou Jun1,3,4
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    References(19)

    [1] [1] Bloembergen N, Pershan P S. Light waves at the boundary of nonlinear media[J]. Physical Review, 1962, 128(2): 606-622.

    [2] [2] Su Yongsheng, Li Liang, He Ning, et al. Experiment of micro-structures on the surface of polycrystalline diamond[J]. Chinese J Lasers, 2014, 41(8): 0803004.

    [3] [3] Zhou B, Kane T J, Dixon G J, et al. Efficient, frequency-stable laser-diode-pumped Nd∶YAG laser[J]. Optics Letters, 1985, 10(2): 62-64.

    [4] [4] Birks T A, Knight J C, Russell P S J. Endlessly single-mode photonic crystal fiber[J]. Optics Letters, 1997, 22(13): 961-963.

    [5] [5] Chichkov B N, Momma C, Nolte S, et al. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Physics A, 1996, 63(2): 109-115.

    [6] [6] Pronko P P, Dutta S K, Du D, et al. Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses[J]. Journal of Applied Physics, 1995, 78(10): 6233-6240.

    [7] [7] Zhu Ruogu. Laser application technology[M]. Beijing: National Defense Industry Press, 2006: 112-178.

    [8] [8] Matsas V J, Newson T P, Richardson D J, et al. Self-starting, passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation[J]. Electronics Letters, 1992, 28(15): 1391-1393.

    [9] [9] Limpert J, Liem A, Reich M, et al. Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier[J]. Optics Express, 2004, 12(7): 1313-1319.

    [10] [10] Agrawal G P. Nonlinear fiber optics[M]. New York: Academic Press, 1995.

    [13] [13] Zaouter Y, Cormier E, Rigail P, et al. 30 W, 10 μJ, 10-ps SPM-induced spectrally compressed pulse generation in a low non-linearity ytterbium-doped rod-type fibre amplifier[C]. SPIE, 2007, 6453: 64530O.

    [14] [14] Nodop D, Schmidt O, Limpert J, et al. 105 kHz, 85 ps, 3 MW microchip laser fiber amplifier system for micro-machining applications[C]. Conference on Lasers and Electro-Optics, 2008: CThL1.

    [15] [15] Zhang Xin, Zhang Hengli, Mao Yefei, et al. Efficient methods of green output by second harmonic generation with short pulse broad-band laser[J]. Chinese J Lasers, 2016, 43(2): 0202003.

    [16] [16] Saby J, Cocquelin B, Meunier A, et al. High average and peak power pulsed fiber lasers at 1030 nm, 515 nm, and 343 nm[C]. SPIE, 2010, 7580: 75800I.

    [17] [17] Saraceno C J, Heckl O H, Baer C R E, et al. Pulse compression of a high-power thin disk laser using rod-type fiber amplifiers[J]. Optics Express, 2011, 19(2): 1395-1407.

    [18] [18] Xu Xin, Hu Xiaohong, Feng Ye, et al. Spatiotemporal evolution of the light field inside the microresonator with normal dispersion[J]. Acta Optica Sinica, 2016, 36(6): 0619001.

    [19] [19] Chang Liping. Research on amplification behavior and nonlinear phenomenon of the ytterbium-doped double-clad fiber amplifiers[D]. Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 2008.

    Tools

    Get Citation

    Copy Citation Text

    Bai Yang, Zou Feng, Wang Ziwei, Wang Zhaokun, Li Qiurui, Qi Yunfeng, He Bing, Zhou Jun. Spectral Properties of Picosecond Fiber Laser System with 3.4 MW Peak Power[J]. Chinese Journal of Lasers, 2017, 44(5): 501004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Dec. 9, 2016

    Accepted: --

    Published Online: May. 3, 2017

    The Author Email: Yang Bai (baiyang@siom.ac.cn)

    DOI:10.3788/cjl201744.0501004

    Topics