Optoelectronic Technology, Volume. 44, Issue 2, 121(2024)

Improvement of the Perovskite Solar Cells Performance and Stability by Using 1‑Methyl‑3‑Propylimidazolium Chloride Hexafluorophosphate Ionic Liquid

Ju SHUAI, Xin YAO, Hong ZHAO, Qi AI, and Zugang LIU
Author Affiliations
  • College of Optical and Electronic Technology,China Jiliang University, Hangzhou 310018,CHN
  • show less
    References(37)

    [1] Kojima A, Teshima K, Shirai Y et al. Organometal halide perovskites as visible‑light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 131, 6050-6051(2009).

    [3] Blancon J C, Even J, Stoumpos C C et al. Semiconductor physics of organic‑inorganic 2D halide perovskites[J]. Nature Nanotechnology, 15, 969-985(2020).

    [4] Zhou Z, He J, Frauenheim T et al. Control of hot carrier cooling in lead halide perovskites by point defects[J]. Journal of the American Chemical Society, 144, 1-18134(2022).

    [5] Fu L, Li H, Wang L et al. Defect passivation strategies in perovskites for an enhanced photovoltaic performance[J]. Energy & Environmental Science, 13, 4017-4056(2020).

    [6] Chen B, Rudd P N, Yang S et al. Imperfections and their passivation in halide perovskite solar cells[J]. Chemical Society Reviews, 48, 3842-3867(2019).

    [7] Wu Z, Zhang M, Liu Y et al. Groups‑dependent phosphines as the organic redox for point defects elimination in hybrid perovskite solar cells[J]. Journal of Energy Chemistry, 54, 23-29(2021).

    [8] Hassan A, Wang Z, Ahn Y H et al. Recent defect passivation drifts and role of additive engineering in perovskite photovoltaics[J]. Nano Energy, 101, 107579(2022).

    [9] Walsh A, Stranks S D. Taking control of ion transport in halide perovskite solar cells[J]. ACS Energy Letters, 3, 1983-1990(2018).

    [10] Cho S H, Byeon J, Jeong K et al. Investigation of defect‑tolerant perovskite solar cells with long‑term stability via controlling the self‑doping effect[J]. Advanced Energy Materials, 11, 2100555(2021).

    [11] Li X, Bi D, Yi C et al. A vacuum flash‑assisted solution process for high‑efficiency large‑area perovskite solar cells[J]. Science, 353, 58-62(2016).

    [12] Wu Y, Zhu H, Yu B B et al. Interface modification to achieve high‑efficiency and stable perovskite solar cells[J]. Chemical Engineering Journal, 433, 134613(2022).

    [13] Song J, Yin X, Hu L et al. Plasmon‑coupled Au‑nanochain functionalized PEDOT: PSS for efficient mixed tin‑lead iodide perovskite solar cells[J]. Chemical Communications, 58, 1366-1369(2022).

    [14] Du X, Zhang J, Su H et al. Synergistic crystallization and passivation by a single molecular additive for high‑performance perovskite solar cells[J]. Advanced Materials, 34, 2204098(2022).

    [15] Xiong S, Hou Z, Dong W et al. Additive‑induced synergies of defect passivation and energetic modification toward highly efficient perovskite solar cells[J]. Advanced Energy Materials, 11, 2101394(2021).

    [16] Yang Z, Dou J, Kou S et al. Multifunctional phosphorus-containing Lewis acid and base passivation enabling efficient and moisture‑stable perovskite solar cells[J]. Advanced Functional Materials, 30, 1910710(2020).

    [17] Zhang F, Bi D, Pellet N et al. Suppressing defects through the synergistic effect of a Lewis base and a Lewis acid for highly efficient and stable perovskite solar cells[J]. Energy & Environmental Science, 11, 3480-3490(2018).

    [18] Niu T, Chao L, Gao W et al. Ionic liquids‑enabled efficient and stable perovskite photovoltaics: Progress and challenges[J]. ACS Energy Letters, 6, 1453-1479(2021).

    [19] Wang B, Qin L, Mu T et al. Are ionic liquids chemically stable?[J]. Chemical Reviews, 117, 7113-7131(2017).

    [20] Wang F, Duan D, Singh M et al. Ionic liquid engineering in perovskite photovoltaics[J]. Energy & Environmental Materials, 6(2023).

    [21] Deng X, Xie L, Wang S et al. Ionic liquids engineering for high‑efficiency and stable perovskite solar cells[J]. Chemical Engineering Journal, 398, 125594(2020).

    [22] Bai S, Da P, Li C et al. Planar perovskite solar cells with long‑term stability using ionic liquid additives[J]. Nature, 571, 245-250(2019).

    [23] Zhu X, Du M, Feng J et al. High‐efficiency perovskite solar cells with imidazolium‐based ionic liquid for surface passivation and charge transport[J]. Angewandte Chemie International Edition, 60, 4238-4244(2021).

    [24] Zhang W, Liu X, He B et al. Interface engineering of imidazolium ionic liquids toward efficient and stable CsPbBr3 perovskite solar cells[J]. ACS Applied Materials & Interfaces, 12, 4540-4548(2020).

    [25] Tian J, Xue Q, Tang X et al. Dual interfacial design for efficient CsPbI2Br perovskite solar cells with improved photostability[J]. Advanced Materials, 31, 1901152(2019).

    [26] Wu G B, Liang R, Ge M Z et al. Surface passivation using 2D perovskites toward efficient and stable perovskite solar cells[J]. Advanced Materials, 34, 2105635-30(2022).

    [27] Tumen‐Ulzii G, Qin C, Klotz D et al. Detrimental effect of unreacted PbI2 on the long‐term stability of perovskite solar cells[J]. Advanced Materials, 32, 1905035(2020).

    [28] Liu F, Dong Q, Wong M K et al. Is excess PbI2 beneficial for perovskite solar cell performance?[J]. Advanced Energy Materials, 6, 1502206(2016).

    [29] Hu P, Huang S, Guo M et al. Ionic liquid‐assisted crystallization and defect passivation for efficient perovskite solar cells with enhanced open‑circuit voltage[J]. Chem. Sus. Chem., 15(2022).

    [30] Wang Y, Yang Y, Han D W et al. Amphoteric imidazole doping induced large‑grained perovskite with reduced defect density for high performance inverted solar cells[J]. Solar Energy Materials and Solar Cells, 212, 110553(2020).

    [31] Stolterfoht M, Le Corre V M, Feuerstein M et al. Voltage‑dependent photoluminescence and how it correlates with the fill factor and open‑circuit voltage in perovskite solar cells[J]. ACS Energy Letters, 4, 2887-2892(2019).

    [32] Li S, Zhu L, Kan Z et al. A multifunctional additive of scandium trifluoromethanesulfonate to achieve efficient inverted perovskite solar cells with a high fill factor of 83.80%[J]. Journal of Materials Chemistry A, 8, 1-19560(2020).

    [33] Macdonald T J, Clancy A J, Xu W et al. Phosphorene nanoribbon‑augmented optoelectronics for enhanced hole extraction[J]. Journal of the American Chemical Society, 143, 2-21559(2021).

    [34] Zhou X, Qi W, Li J et al. Toward efficient and stable perovskite solar cells: Choosing appropriate passivator to specific defects[J]. Solar RRL, 4(2020).

    [35] Yang J, Sheng W, Li R et al. Uncovering the mechanism of poly (ionic‐liquid)s multiple inhibition of ion migration for efficient and stable perovskite solar cells[J]. Advanced Energy Materials, 12, 2103652(2022).

    [36] Zhang J, Yang J, Dai R et al. Elimination of interfacial lattice mismatch and detrimental reaction by self‐assembled layer dual‐passivation for efficient and stable inverted perovskite solar cells[J]. Advanced Energy Materials, 12, 2103674(2022).

    [37] Akin S, Akman E, Sonmezoglu S. FAPbI3‐based perovskite solar cells employing hexyl‐based ionic liquid with an efficiency over 20% and excellent long‐term stability[J]. Advanced Functional Materials, 30, 2002964(2020).

    Tools

    Get Citation

    Copy Citation Text

    Ju SHUAI, Xin YAO, Hong ZHAO, Qi AI, Zugang LIU. Improvement of the Perovskite Solar Cells Performance and Stability by Using 1‑Methyl‑3‑Propylimidazolium Chloride Hexafluorophosphate Ionic Liquid[J]. Optoelectronic Technology, 2024, 44(2): 121

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 25, 2023

    Accepted: --

    Published Online: Jul. 19, 2024

    The Author Email:

    DOI:10.12450/j.gdzjs.202402007

    Topics