Study On Optical Communications, Volume. 51, Issue 2, 240038-01(2025)
Design of High Nonlinear Photonic Crystal Fiber with Low Loss Spiral Structure
[1] Knight J C, Birks T A, Russell P S et al. All-silica Single-mode Optical Fiber with Photonic Crystal Cladding[J]. Optics Letters, 21, 1547-1549(1996).
[2] Chen D, Shen L. Ultrahigh Birefringent Photonic Crystal Fiber with Ultralow Confinement Loss[J]. IEEE Photonics Technology Letters, 19, 185-187(2007).
[3] Li X, Xu Z, Ling W et al. Design of Highly Nonlinear Photonic Crystal Fibers with Flattened Chromatic Dispersion[J]. Applied Optics, 53, 6682-6687(2014).
[4] Abdur Razzak S M, Namihira Y. Tailoring Dispersion and Confinement Losses of Photonic Crystal Fibers Using Hybrid Cladding[J]. Journal of Lightwave Technology, 26, 1909-1914(2008).
[5] Hitaishi V, Ashok N. Broadband Supercontinuum Generation Using Dispersion Engineered As2Se3-GeAsSe-GeAsS Waveguide at 6 mm[J]. IEEE Access, 11, 12294-12302(2023).
[6] Gu S, Sun W, Li M et al. Highly Sensitive Plasmonic Refractive Index Sensor based on Dual D-shaped Photonic Crystal Fiber with Aluminum Nitride-silver Films[J]. Plasmonics, 17, 1129-1137(2022).
[7] Akasaka Y, Palacharla P, Takasaka S et al. Hybrid Amplification Approach towards Wideband Optical Communications[J]. Journal of Lightwave Technology, 41, 815-821(2023).
[8] Huang Y, Wang Y, Zhang L et al. Tunable Electro-optical Modulator based on a Photonic Crystal Fiber Selectively Filled with Liquid Crystal[J]. Journal of Lightwave Technology, 37, 1903-1908(2019).
[9] Cheng T, Sun Y, Zhang F et al. Numerical Demonstration of Mid-infrared Temperature Sensing by Soliton Self-frequency Shift in a Fluorotellurite Microstructured Fiber[J]. Applied Physics B, 127, 156(2021).
[10] Yang S Y, He W, Zhang Y M et al. Simulation Analysis of Temperature Sensing Characteristics of Photonic Crystal Fiber with Gold Plated Surface[J]. Study on Optical Communications, 230008(2024).
[11] Eid M M A, Habib M A, Anower M S et al. Highly Sensitive Nonlinear Photonic Crystal Fiber based Sensor for Chemical Sensing Applications[J]. Microsystem Technologies, 27, 1007-1014(2021).
[12] Smektala F, Brilland L, Chartier T et al. Recent Advances in the Development of Holey Optical Fibers based on Sulphide Glasses[J]. Photonic Crystal Materials and Devices IV, 6128, 106-113(2006).
[13] Dussauze M, Cardinal T. Nonlinear Optical Properties of Glass[M]. Springer Handbook of Glass, 193-225(2019).
[14] Savage J A, Nielsen S. Chalcogenide Glasses Transmitting in the Infrared between 1 and 20 μA State of the Art Review[J]. Infrared Physics, 5, 195-204(1965).
[15] Lenz G, Zimmermann J, Katsufuji T et al. Large Kerr Effect in Bulk Se-based Chalcogenide Glasses[J]. Optics Letters, 25, 254-256(2000).
[16] Fortier C, Fatome J, Pitois S et al. Experimental Investigation of Brillouin and Raman Scattering in a Ge15Sb20S65 Microstructured Chalcogenide Fiber[C], 4729397(2008).
[17] Mamtaz R, Ahmed K, Paul B K et al. Design and FEM Analysis of Pentagonal Photonic Crystal Fiber for Highly Non-linear Applications[J]. Optical and Quantum Electronics, 52, 455(2020).
[18] Du Z, He J, Wei F et al. High Birefringence and Nonlinear Photonic Crystal Fiber with Two Zero-dispersion Wavelengths[J]. Indian Journal of Physics, 97, 1235-1241(2023).
[19] Sanghera J S, Shaw L B, Pureza P et al. Nonlinear Properties of Chalcogenide Glass Fibers[J]. International Journal of Applied Glass Science, 1, 296-308(2010).
[20] Chen L, Chen F, Dai S et al. Third-order Nonlinearity in Ge-Sb-Se Glasses at Mid-infrared Wavelengths[J]. Materials Research Bulletin, 70, 204-208(2015).
[21] Devika V, Rajan M S M. Hexagonal PCF of Honeycomb Lattice with High Birefringence and High Nonlinearity[J]. International Journal of Modern Physics B, 34, 2050094(2020).
[22] Hui Z, Wang X, Zhang Y et al. Design of a Mid-infrared Ultra-broadband Chalcogenide Ge20Sb15Se65-based Single-polarization Single-mode Photonic Crystal Fiber with Large Nonlinearity[J]. Optik, 184, 50-62(2019).
[23] Kumar P, Fiaboe K F, Roy J S. Design of Nonlinear Photonic Crystal Fibers with Ultra-flattened Zero Dispersion for Supercontinuum Generation[J]. ETRI Journal, 42, 282-291(2020).
[24] Chen Y, Yamanaka M, Nishizawa N. Tunable Quasi-supercontinuum Generation in a 1.7 μm Spectral Band for Spectral Domain Optical Coherence Tomography[J]. Optics Continuum, 2, 1941(2023).
[25] Wei Q, Yuan J, Qin P et al. Numerical Investigation of Efficient Mid-infrared Supercontinuum Generation and Cavity Soliton Generation based on Flattened Near-zero Dispersion Fiber[J]. Laser Physics, 30, 085105(2020).
[26] Hossain S, Shah S, Faisal M. Ultra-high Birefringent, Highly Nonlinear Ge20Sb15Se65 Chalcogenide Glass Photonic Crystal Fiber with Zero Dispersion Wavelength for Mid-infrared Applications[J]. Optik, 225, 165753-165778(2021).
[27] Ahmad R. Mid-infrared Supercontinuum Generation in Liquid-filled Chalcogenide Suspended Core Fiber[J]. Photonics and Nanostructures-Fundamentals and Applications, 52, 101080(2022).
[28] Coulombier Q, Brilland L, Houizot P et al. Casting Method for Producing Low-loss Chalcogenide Micro-structured Optical Fibers[J]. Optics Express, 18, 9107-9112(2010).
Get Citation
Copy Citation Text
Zhijun TIAN, Jie DONG, Shanglin HOU, Jingli LEI, Gang WU, Zuyong YAN. Design of High Nonlinear Photonic Crystal Fiber with Low Loss Spiral Structure[J]. Study On Optical Communications, 2025, 51(2): 240038-01
Category:
Received: Mar. 29, 2024
Accepted: --
Published Online: May. 22, 2025
The Author Email: Shanglin HOU (houshanglin@vip.163.com)