Chinese Journal of Lasers, Volume. 49, Issue 19, 1906001(2022)
Research and Progress of Resonant Integrated Optical Gyroscopes
[1] Bhaskaran S, Kennedy B. Closed loop terminal guidance navigation for a kinetic impactor spacecraft[J]. Acta Astronautica, 103, 322-332(2014).
[4] Khial P P, White A D, Hajimiri A. Nanophotonic optical gyroscope with reciprocal sensitivity enhancement[J]. Nature Photonics, 12, 671-675(2018).
[6] Deng S S, Xiao Z S, Yan L et al. The status and prospects of integrated optical gyroscopes and related topics[J]. Physics, 41, 179-185(2012).
[7] Post E J. Sagnac effect[J]. Reviews of Modern Physics, 39, 475-493(1967).
[8] Gundavarapu S, Belt M, Huffman T A et al. Interferometric optical gyroscope based on an integrated Si3N4 low-loss waveguide coil[J]. Journal of Lightwave Technology, 36, 1185-1191(2018).
[9] Liang W, Ilchenko V S, Savchenkov A A et al. Resonant microphotonic gyroscope[J]. Optica, 4, 114-117(2017).
[10] Lai Y H, Suh M G, Lu Y K et al. Earth rotation measured by a chip-scale ring laser gyroscope[J]. Nature Photonics, 14, 345-349(2020).
[11] Silver J M, del Bino L, Woodley M T et al. Nonlinear enhanced microresonator gyroscope[J]. Optica, 8, 1219-1226(2021).
[12] Liao A S H, Wang S. Semiconductor injection lasers with a circular resonator[J]. Applied Physics Letters, 36, 801-803(1980).
[13] Jezierski A F, Laybourn P J R. Integrated semiconductor ring lasers[J]. IEE Proceedings J Optoelectronics, 135, 17-24(1988).
[14] Ciminelli C, Dell’Olio F, Campanella C E et al. Photonic technologies for angular velocity sensing[J]. Advances in Optics and Photonics, 2, 370-404(2010).
[15] Hansen P B, Raybon G, Chien M D et al. A 1.54-μm monolithic semiconductor ring laser: CW and mode-locked operation[J]. IEEE Photonics Technology Letters, 4, 411-413(1992).
[16] Sorel M, Giuliani G, Scire A et al. Operating regimes of GaAs-AlGaAs semiconductor ring lasers: experiment and model[J]. IEEE Journal of Quantum Electronics, 39, 1187-1195(2003).
[17] Armenise M N, Passaro V M N, de Leonardis F et al. Modeling and design of a novel miniaturized integrated optical sensor for gyroscope systems[J]. Journal of Lightwave Technology, 19, 1476-1494(2001).
[18] Rong H S, Xu S B, Kuo Y H et al. Low-threshold continuous-wave Raman silicon laser[J]. Nature Photonics, 1, 232-237(2007).
[19] Xiao Z S, Yan L, Deng S S. Construction method of silicon-based coupled resonant ring structure to provide stimulated Raman scattering optical gain[P].
[20] Li J, Suh M G, Vahala K J O. Microresonator Brillouin gyroscope[J]. Optica, 4, 346-348(2017).
[21] Han X, Liu J M, Zhang F et al. Approaching high gain in rare-earth-doped waveguide amplifiers: a technological review[J]. Materials Review, 30, 109-114, 133(2016).
[22] Bradley J D B, Pollnau M. Erbium-doped integrated waveguide amplifiers and lasers[J]. Laser & Photonics Reviews, 5, 368-403(2011).
[23] Pollnau M. Rare-earth-ion-doped channel waveguide lasers on silicon[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 414-425(2015).
[24] Liu Y, Qiu Z, Ji X et al. A photonic integrated circuit-based erbium-doped amplifier[J]. Science, 376, 1309-1313(2022).
[25] Monifi F, Kaya Özdemir Ş, Yang L. Tunable add-drop filter using an active whispering gallery mode microcavity[J]. Applied Physics Letters, 103, 181103(2013).
[26] Hsiao H K, Winick K A. Planar glass waveguide ring resonators with gain[J]. Optics Express, 15, 17783-17797(2007).
[27] Xiao Z S, Yan L, Deng S S. A construction method of three-dimensional active coupled resonant ring structure based on rare earth doped glass[P].
[28] Chen J Y, Zhang H, Jin J J et al. Optimization of gyroscope properties with active coupled resonator optical waveguide structures[J]. Proceedings of SPIE, 9378, 93781Q(2015).
[29] Zhang T, Qian G, Wang Y Y et al. Integrated optical gyroscope using active long-range surface plasmon-polariton waveguide resonator[J]. Scientific Reports, 4, 3855(2014).
[30] Wang Y Y, Zhang T. Spontaneous emission noise in long-range surface plasmon polariton waveguide based optical gyroscope[J]. Scientific Reports, 4, 6369(2014).
[31] Jin J J, Zhang H, Chen J Y et al. Research progress on integrated optical gyroscope with optical gain[J]. Laser & Optoelectronics Progress, 53, 030002(2016).
[32] Deng S S, Xiao Z S, Yan L et al. Slow-fast light and optical gain effects on sensitivity of integrated optical gyroscope[J]. Chinese Science Bulletin, 58, 1802-1808(2013).
[33] Wang L J, Kuzmich A, Dogariu A. Gain-assisted superluminal light propagation[J]. Nature, 406, 277-279(2000).
[34] Yablon J, Zhou Z F, Zhou M C et al. Theoretical modeling and experimental demonstration of Raman probe induced spectral dip for realizing a superluminal laser[J]. Optics Express, 24, 27444-27456(2016).
[35] Scheuer J, Shahriar S M. Lasing dynamics of super and sub luminal lasers[J]. Optics Express, 23, 32350-32366(2015).
[36] Pati G S, Salit M, Salit K et al. Demonstration of a tunable-bandwidth white-light interferometer using anomalous dispersion in atomic vapor[J]. Physical Review Letters, 99, 133601(2007).
[37] Shahriar M S, Pati G S, Tripathi R et al. Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light[J]. Physical Review A, 75, 053807(2007).
[38] Smith D D, Myneni K, Odutola J A et al. Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium[J]. Physical Review A, 80, 011809(2009).
[39] Smith D D, Luckay H A, Chang H et al. Quantum-noise-limited sensitivity-enhancement of a passive optical cavity by a fast-light medium[J]. Physical Review A, 94, 023828(2016).
[41] Scheuer J, Paloczi G T, Poon J K S et al. Coupled resonator optical waveguides: toward the slowing and storage of light[J]. Optics and Photonics News, 16, 36-40(2005).
[42] Scheuer J, Yariv A. Sagnac effect in coupled-resonator slow-light waveguide structures[J]. Physical Review Letters, 96, 053901(2006).
[43] Yan L, Xiao Z S, Guo X Q et al. Circle-coupled resonator waveguide with enhanced Sagnac phase-sensitivity for rotation sensing[J]. Applied Physics Letters, 95, 141104(2009).
[44] Kalantarov D, Search C P. Effect of resonator losses on the sensitivity of coupled resonator optical waveguide gyroscopes[J]. Optics Letters, 39, 985-988(2014).
[45] Terrel M A, Digonnet M J F, Fan S H. Performance limitation of a coupled resonant optical waveguide gyroscope[J]. Journal of Lightwave Technology, 27, 47-54(2009).
[46] Terrel M, Digonnet M J F, Fan S. Performance comparison of slow-light coupled-resonator optical gyroscopes[J]. Laser & Photonics Review, 3, 452-465(2009).
[47] Zhang H, Liu J M, Lin J et al. On-chip tunable dispersion in a ring laser gyroscope for enhanced rotation sensing[J]. Applied Physics A, 122, 501(2016).
[48] Lin J, Liu J M, Zhang H et al. Theoretical analyses of resonant frequency shift in anomalous dispersion enhanced resonant optical gyroscopes[J]. Scientific Reports, 6, 38759(2016).
[49] Zhang H, Chen J Y, Jin J J et al. On-chip modulation for rotating sensing of gyroscope based on ring resonator coupled with Mach-Zehnder interferometer[J]. Scientific Reports, 6, 19024(2016).
[50] Zhang H, Li W X, Han P et al. The effect of broadened linewidth induced by dispersion on the performance of resonant optical gyroscope[J]. Optics Communications, 407, 208-216(2018).
[51] Zhang H, Li W X, Han P et al. Mode broadening induced by rotation rate in an atom assisted microresonator[J]. Journal of Applied Physics, 125, 084502(2019).
[52] Wicht A, Danzmann K, Fleischhauer M et al. White-light cavities, atomic phase coherence, and gravitational wave detectors[J]. Optics Communications, 134, 431-439(1997).
[53] Caves C M. Quantum-mechanical noise in an interferometer[J]. Physical Review D, 23, 1693-1708(1981).
[54] Barnett S M, Fabre C, Matre A. Ultimate quantum limits for resolution of beam displacements[J]. The European Physical Journal D, 22, 513-519(2003).
[55] Chang X Y, Zhang H, Li W X et al. Sensitivity enhancement of a dispersive cavity with squeezed vacuum light injection[J]. Journal of the Optical Society of America B, 39, 1815-1821(2022).
[56] Zhao L, Zhang H, Deng S S et al. Research progress of fast-light enhanced resonant optical gyroscope[J]. Laser & Optoelectronics Progress, 50, 030007(2013).
[57] Bender C M, Boettcher S. Real spectra in non-Hermitian hamiltonians having PT symmetry[J]. Physical Review Letters, 80, 5243-5246(1998).
[58] El-Ganainy R, Makris K G, Christodoulides D N et al. Theory of coupled optical PT-symmetric structures[J]. Optics Letters, 32, 2632-2634(2007).
[59] Cham J. Top 10 physics discoveries of the last 10 years[J]. Nature Physics, 11, 799(2015).
[60] Feng L, El-Ganainy R, Ge L. Non-Hermitian photonics based on parity-time symmetry[J]. Nature Photonics, 11, 752-762(2017).
[61] Rüter C E, Makris K G, El-Ganainy R et al. Observation of parity-time symmetry in optics[J]. Nature Physics, 6, 192-195(2010).
[62] Chang L, Jiang X S, Hua S Y et al. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators[J]. Nature Photonics, 8, 524-529(2014).
[63] Ren J, Hodaei H, Harari G et al. Ultrasensitive micro-scale parity-time-symmetric ring laser gyroscope[J]. Optics Letters, 42, 1556-1559(2017).
[64] Sunada S. Large Sagnac frequency splitting in a ring resonator operating at an exceptional point[J]. Physical Review A, 96, 033842(2017).
[65] de Carlo M, de Leonardis F, Passaro V M N. Design rules of a microscale PT-symmetric optical gyroscope using group IV platform[J]. Journal of Lightwave Technology, 36, 3261-3268(2018).
[66] Jiang S, Chang X Y, Li W X et al. On-chip high sensitivity rotation sensing based on higher-order exceptional points[J]. Journal of the Optical Society of America B, 36, 2618-2623(2019).
[67] de Carlo M, de Leonardis F, Lamberti L et al. High-sensitivity real-splitting anti-PT-symmetric microscale optical gyroscope[J]. Optics Letters, 44, 3956-3959(2019).
[68] Hokmabadi M P, Schumer A, Christodoulides D N et al. Non-Hermitian ring laser gyroscopes with enhanced Sagnac sensitivity[J]. Nature, 576, 70-74(2019).
[69] Lai Y H, Lu Y K, Suh M G et al. Observation of the exceptional-point-enhanced Sagnac effect[J]. Nature, 576, 65-69(2019).
[70] Zhong Q, Ren J, Khajavikhan M et al. Sensing with exceptional surfaces in order to combine sensitivity with robustness[J]. Physical Review Letters, 122, 153902(2019).
[71] Qin G Q, Xie R R, Zhang H et al. Experimental realization of sensitivity enhancement and suppression with exceptional surfaces[J]. Laser Photonics Reviews, 15, 2000569(2021).
[72] Soleymani S, Zhong Q, Mokim M et al. Chiral and degenerate perfect absorption on exceptional surfaces[J]. Nature Communications, 13, 599(2022).
[73] Yang H, Mao X, Qin G Q et al. Scalable higher-order exceptional surface with passive resonators[J]. Optics Letters, 46, 4025-4028(2021).
[74] Li W X, Zhou Y, Han P et al. Exceptional-surface-enhanced rotation sensing with robustness in a whispering-gallery-mode microresonator[J]. Physical Review A, 104, 033505(2021).
[75] del Bino L, Silver J M, Stebbings S L et al. Symmetry breaking of counter-propagating light in a nonlinear resonator[J]. Scientific Reports, 7, 43142(2017).
Get Citation
Copy Citation Text
Zhisong Xiao, Hao Zhang, Yang Zhou, Wei Cai, Wenxiu Li, Xiaoyang Chang, Shuo Jiang, Anping Huang. Research and Progress of Resonant Integrated Optical Gyroscopes[J]. Chinese Journal of Lasers, 2022, 49(19): 1906001
Category: Fiber optics and optical communication
Received: Jun. 6, 2022
Accepted: Aug. 2, 2022
Published Online: Sep. 20, 2022
The Author Email: Xiao Zhisong (zsxiao@buaa.edu.cn)