Laser & Optoelectronics Progress, Volume. 62, Issue 9, 0906006(2025)

Optical Fiber Fabry-Perot Temperature Sensor Based on Harmonic Vernier Effect

Wenxuan Wang1, Jianhua Chang1,2,3、*, Xinyi Ke3, Taimin Rong3, Xinxin Wu3, and Yang Min3
Author Affiliations
  • 1Changwang School of Honors, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu , China
  • 2Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu , China
  • 3School of Electronics and Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu , China
  • show less
    Figures & Tables(9)
    Structure diagram of parallel sensor
    Production process of air cavity and PDMS cavity
    Schematic diagram and microscopic images of the sensor testing device. (a) Experimental testing device schematic diagram; (b) microscopic image of FPIr1 sensor; (c) microscopic image of FPIr2 sensor; (d) microscopic image of FPIs sensor
    Reflection spectra and FFT results of FPIs and FPIr. (a) Reflection spectrum of individual FPIs; (b) reflection spectrum of individual FPIr1; (c) reflection spectrum of individual FPIr2; (d) FFT results of a single FPIs interference spectrum; (e) FFT results of a single FPIr1 interference spectrum; (f) FFT results of a single FPIr2 interference spectrum
    Reflection spectra of different cavities in parallel. (a) Reflection spectrum of FPIs+FPIr1 parallel structure; (b) reflection spectrum of FPIs+FPIr2 parallel structure
    Temperature response characteristics of FPIs+FPIr1. (a) FPIs temperature response characteristics; (b) FPIs wavelength displacement curve fitting; (c) envelope curves versus temperature; (d) fitting of envelope displacement curves
    Temperature response characteristics of FPIs+FPIr2. (a) Envelope curves versus temperature within 32‒34 ℃; (b) envelope displacement curves fitting within 32‒34 ℃; (c) envelope curves versus temperature within 35‒38 ℃; (d) envelope displacement curves fitting within 35‒38 ℃
    Results of stability experiments. (a) Characteristic spectral changes of FPIs+FPIr1; (b) wavelength shifts of FPIs+FPIr1; (c) characteristic spectral changes of FPIs+FPIr2; (d) wavelength shifts of FPIs+FPIr2
    • Table 1. [in Chinese]

      View table

      Table 1. [in Chinese]

      TechniqueSensitivity /(nm/℃)Range /℃Ref.Note
      PMF-SI+ PMF-SI-13.54028‒3620Cascaded SIs, TVE
      OCFPI encapsulated with the PDMS film-3.40040‒6023FPIS HVE (i=4)
      PDMS-based FPIs+capillary-based FPIr-8.43338‒4226Cascaded FPIs,TVE
      Cascaded dual PDMS cavity11.93040‒4628Enhanced vernier effect,TVE
      Air cavity +PDMS cavity7.61034‒3929Enhanced TVE
      Paralleled air cavity and PDMS cavity-TVE-5.12531‒35This workParalleled FPIs TVE
      Paralleled air cavity and PDMS cavity-HVE16.025, 16.84332‒34,35‒38This workParalleled FPIs HVE (i=1)
    Tools

    Get Citation

    Copy Citation Text

    Wenxuan Wang, Jianhua Chang, Xinyi Ke, Taimin Rong, Xinxin Wu, Yang Min. Optical Fiber Fabry-Perot Temperature Sensor Based on Harmonic Vernier Effect[J]. Laser & Optoelectronics Progress, 2025, 62(9): 0906006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Jan. 24, 2025

    Accepted: Feb. 12, 2025

    Published Online: May. 9, 2025

    The Author Email: Jianhua Chang (jianhuachang@nuist.edu.cn)

    DOI:10.3788/LOP250579

    CSTR:32186.14.LOP250579

    Topics