Optics and Precision Engineering, Volume. 33, Issue 3, 486(2025)
Secret key extraction from atmospheric wireless optical channels by combing with generative adversarial network
[1] RAPPAPORT T S, XING Y C, MACCARTNEY G R et al. Overview of millimeter wave communications for fifth-generation (5G) wireless networks: with a focus on propagation models[J]. IEEE Transactions on Antennas and Propagation, 65, 6213-6230(2017).
[2] LIAO Y, LI Y J. Lightweight and low complexity CSI feedback method for FDD massive MIMO systems[J]. Acta Electronica Sinica, 50, 1211-1217(2022).
廖勇, 李玉杰. 一种轻量化低复杂度的FDD大规模MIMO系统CSI反馈方法[J]. 电子学报, 50, 1211-1217(2022).
[3] CHEN C, JENSEN M A. Secret key establishment using temporally and spatially correlated wireless channel coefficients[J]. IEEE Transactions on Mobile Computing, 10, 205-215(2011).
[4] ZHAN F R, YAO N M, GAO Z G et al. Efficient key generation leveraging wireless channel reciprocity for MANETs[J]. Journal of Network and Computer Applications, 103, 18-28(2018).
[5] MARGELIS G, FAFOUTIS X, OIKONOMOU G et al. Efficient DCT-based secret key generation for the internet of things[J]. Ad Hoc Networks, 92, 101744(2019).
[6] CHENG L W, LI W, MA D T et al. Towards an effective secret key generation scheme for imperfect channel state information[C], 915-920(23).
[7] CHEN Y R, LUO Z Y, WANG Z Y et al. Physical-layer secret key generation based on bidirectional convergence feature learning convolutional network[J]. IEEE Internet of Things Journal, 10, 14846-14855(2023).
[8] WANG T Q, WEN C K, JIN S et al. Deep learning-based CSI feedback approach for time-varying massive MIMO channels[J]. IEEE Wireless Communications Letters, 8, 416-419(2022).
[9] ZHANG X W, LI G Y, ZHANG J Q et al. Deep-learning-based physical-layer secret key generation for FDD systems[J]. IEEE Internet of Things Journal, 9, 6081-6094(2022).
[10] JAMEEL A S M M, MALHOTRA A, GAMAL A E et al. Deep OFDM channel estimation: capturing frequency recurrence[J]. IEEE Communications Letters, 28, 562-566(2024).
[11] CHEN C Y. Sample-grouping-based vector quantization for secret key extraction from atmospheric optical wireless channels[J]. IEEE Transactions on Wireless Communications, 21, 8905-8918(2022).
[12] 刘维, 王静怡, 马鑫洋. 混合毫米波射频/多输入多输出-自由空间光通信中继系统[J]. 光学 精密工程, 30, 536-544(2022).
LIU W, WANG J Y, MA X Y et al. Hybrid millimeter wave RF/MIMO-FSO relay system[J]. Opt. Precision Eng., 30, 536-544(2022).
[13] PREMNATH S N N, JANA S, CROFT J et al. Secret key extraction from wireless signal strength in real environments[J]. IEEE Transactions on Mobile Computing, 12, 917-930(2013).
[14] MURPHY K, SCHÖLKOPF B, GANIN Y et al. Domain-adversarial training of neural networks[J]. Journal of Machine Learning Research, 17, 2096-2030(2016).
[15] NGUYEN C, HOANG T M, CHEEMA A A. Channel estimation using CNN-LSTM in RIS-NOMA assisted 6G network[J]. IEEE Transactions on Machine Learning in Communications and Networking, 1, 43-60(2023).
[16] SONG S, LIU Y J, XU T M et al. Channel prediction for intelligent FSO transmission system[J]. Optics Express, 29, 27882-27899(2021).
[17] WANG X L. Research on Time Series Prediction and Filling Method Based on GAN and GRU[D](2021).
王旭磊. 基于GAN和GRU的时间序列预测和填补方法研究[D](2021).
[18] 李寅. 基于改进的Wasserstein生成对抗网络的高光谱智能关键技术研究[D](2020).
LI Y. Research on Key Technologies of Hyperspectral Intelligence Based on Improved Wasserstein Generation Countermeasure Network[D](2020).
[19] ARJOVSKY M, CHINTALA S, BOTTOU L et al. Wasserstein generative adversarial networks[C], 214-223(2017).
[20] ZHOU J Q, ZENG X. Physical-layer secret key generation based on domain-adversarial training of autoencoder for spatial correlated channels[J]. Applied Intelligence, 53, 5304-5319(2023).
[21] JIA R Q. Key Generation and Security Analysis of Wireless Physical Layer[D](2016).
贾仁庆. 无线物理层密钥产生及安全性分析[D](2016).
[22] XIONG Q Q, CHEN CH Y, YU H Y et al. Study on simulation of two cross-correlated received signals in turbulent OAM optical diversity channels[J]. Acta Electronica Sinica, 50, 18-25(2022).
熊琴琴, 陈纯毅, 于海洋. 交叉相关双路分集OAM湍流光信道接收信号模拟研究[J]. 电子学报, 50, 18-25(2022).
[23] CHEN CH Y, XIONG Q Q, YU H Y et al. Study on generation of turbulence-distorted received signals in OAM optical communications obeying dual Johnson SB distribution[J]. Journal on Communications, 41, 108-115(2020).
陈纯毅, 熊琴琴, 于海洋. 双Johnson SB分布湍流扰动OAM光通信接收信号生成研究[J]. 通信学报, 41, 108-115(2020).
[24] ABDELLI K, GRIESER H, PACHNICKE S. A machine learning-based framework for predictive maintenance of semiconductor laser for optical communication[J]. Journal of Lightwave Technology, 40, 4698-4708.
[26] 张泳翔. 基于无线信道特征的物理层密钥技术研究[D](2022).
ZHANG Y X. Research on Physical Layer Key Technology Based on Wireless Channel Characteristics[D](2022).
[27] 刘圣杰. 基于深度学习的智能反射面辅助物理层密钥生成技术研究[D](2023).
LIU SH J. Research on Intelligent Reflector Assisted Physical Layer Key Generation Technology Based on Deep Learning[D](2023).
[28] LU Y J, WU F, HUANG Q Y et al. Telling secrets in the light: an efficient key extraction mechanism
Get Citation
Copy Citation Text
Zhuozhan TIAN, Chunyi CHEN, Xiaojuan HU, Haiyang YU, Yanfeng LI, Fang WANG. Secret key extraction from atmospheric wireless optical channels by combing with generative adversarial network[J]. Optics and Precision Engineering, 2025, 33(3): 486
Category:
Received: Sep. 13, 2024
Accepted: --
Published Online: Apr. 30, 2025
The Author Email: Chunyi CHEN (chenchunyi@hotmail.com)