Laser & Optoelectronics Progress, Volume. 58, Issue 14, 1410021(2021)

Optimization Method for Sensing Matrix Based on Transfer Learning

Zhaoyang Mao, Lan Li*, and Wei Wei
Author Affiliations
  • School of Science, Xi’an Shiyou University, Xi’an, Shaanxi 710065, China
  • show less
    Figures & Tables(7)
    Histogram of the off-diagonal entries in the Gram matrix. (a) Random Gaussian matrix; (b) EIG method; (c) Elad method; (d) our method
    Reconstruction errors of OMP and BP algorithm
    Reconstructed images at different sampling rates. (a) Original image; (b) sampling rate is 0.3; (c) sampling rate is 0.4; (d) sampling rate is 0.5
    • Table 1. Transfer learning optimization of the sparse base

      View table

      Table 1. Transfer learning optimization of the sparse base

      Algorithm 1:transfer learning optimization of the sparse base
      Input:signal x,wavelet basic Ψ0,sparse matrix Ψ(0),maximum number of iterations Imax,soft threshold parameters λfor z=1∶Imaxcalculating sparsity coefficient s(z) by Eq. (12)singular value decomposition of s(z)xT+βΨ0 is performed to obtain UΣVTupdate Ψ(z)by Eq. (17)end forOutput:Ψ=Ψ(z)
    • Table 2. Process of constructing measurement matrix

      View table

      Table 2. Process of constructing measurement matrix

      Algorithm 2: construction of measurement matrix Φ
      Input: measurement matrix Φ, sparse matrix Ψ, iterative threshold εInitialization: Gaussian random matrix Φ, A=ΦΨwhile halting criterion false doG=A~TA~,eigenvalue decomposition G=VHVTH^←diagH=n/mA^=VH^VTε0=A^ sum of non-diagonal elements if ε0-n/m2-n<ε doΦ^=A^Ψ-1 return ΦΦ^Output: measurement matrix Φ
    • Table 3. PSNR of images reconstructed by 4 methods unit: dB

      View table

      Table 3. PSNR of images reconstructed by 4 methods unit: dB

      MethodSampling rateBarbaraBoatsHouseLenaPeppersAverage
      Gaussian0.25.9634.3254.2423.9044.7204.630
      0.422.66621.97224.39825.24323.40523.536
      0.627.66925.88929.62230.25428.28328.343
      EIG0.26.4224.0514.4473.9264.3194.633
      0.423.42022.16725.38425.35823.73524.012
      0.629.37827.50831.94131.96630.26930.212
      Elad0.25.2844.9873.0354.2455.4384.597
      0.422.06522.06525.82425.81623.47923.849
      0.629.37827.32231.41231.96629.82629.980
      Ours0.27.3255.4244.7004.7574.6505.371
      0.423.11122.31725.27125.85823.71524.054
      0.629.69527.62931.97432.04430.38730.346
    • Table 4. Running time of 4 methods unit: s

      View table

      Table 4. Running time of 4 methods unit: s

      MethodBarbaraBoatsHouseLenaPeppers
      Gaussian1.5931.5591.5141.5681.499
      EIG1.8601.7851.7251.7371.727
      Elad6.0246.2636.0326.0826.051
      Ours2.0822.1202.0662.0962.097
    Tools

    Get Citation

    Copy Citation Text

    Zhaoyang Mao, Lan Li, Wei Wei. Optimization Method for Sensing Matrix Based on Transfer Learning[J]. Laser & Optoelectronics Progress, 2021, 58(14): 1410021

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Nov. 5, 2020

    Accepted: Dec. 2, 2020

    Published Online: Jun. 30, 2021

    The Author Email: Lan Li (lanli@xsyu.edu.cn)

    DOI:10.3788/LOP202158.1410021

    Topics