Journal of Inorganic Materials, Volume. 38, Issue 1, 3(2023)
[6] LIN D C, LIU L, ZHANG M X et al. Evaluations of the serological test in the diagnosis of 2019 novel coronavirus (SARS-CoV-2) infections during the COVID-19 outbreak[J]. European Journal of Clinical Microbiology & Infectious Diseases, 2271(2020).
[19] CORMAN V M, LANDT O, KAISER M et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR[J]. Euro surveillnace, 23(2020).
[23] CHEN L J, LIU W Y, ZHANG Q et al. RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak[J]. Emerging Microbes & Infections, 313(2020).
[27] NOTOMI T, OKAYAMA H, MASUBUCHI H et al. Loop-mediated isothermal amplification of DNA[J]. Nucleic Acids Research, 63(2000).
[34] TANG M H, WANG G H, KONG S K et al. A review of biomedical centrifugal microfluidic platforms[J]. Micromachines (Basel), 26(2016).
[40] SUO T, LIU X J, GUO M et al. ddPCR: a more accurate tool for SARS-CoV-2 detection in low viral load specimens[J]. Emerging Microbes & Infections, 1259(2020).
[41] HOU T Y, ZENG W Q, YANG M L et al. Development and evaluation of a rapid CRISPR-based diagnostic for COVID-19[J]. PLoS Pathogens, e1008(2020).
[46] HOU H Y, WANG T, ZHANG B et al. Detection of IgM and IgG antibodies in patients with coronavirus disease 2019[J]. Clinical Translational Immunology, 01136(2020).
[47] LIU W B, LIU L, KOU G M et al. Evaluation of nucleocapsid and spike protein-based enzymeLinked immunosorbent assays for detecting antibodies against SARS-CoV-2[J]. Journal of Clinical Microbiology, 00461(2020).
[51] WANG H H, LI X M, LI T et al. The genetic sequence, origin, and diagnosis of SARS-CoV-2[J]. European Journal of Clinical Microbiology & Infectious Diseases, 1629(2020).
[52] ALBERT E, TORRES I, BUENO F et al. Field evaluation of a rapid antigen test (Panbio COVID-19 Ag rapid test device) for COVID-19 diagnosis in primary healthcare centres[J]. Clinical Microbiology and Infection, 472(2021).
[92] ZHANG R Q, LIU S L, ZHAO W et al. A simple point-of-care microfluidic immunomagnetic fluorescence assay for pathogens[J]. Analtical Chemistry, 2645(2013).
[93] TAKEMURA K, ADEGOKE O, SUZUKI T et al. A localized surface plasmon resonance-amplified immunofluorescence biosensor for ultrasensitive and rapid detection of nonstructural protein 1 of Zika virus[J]. PLoS ONE, 0211517(2019).
[102] CHU Y J, QIU J Y, WANG Y H et al. Rapid and high-throughput SARS-CoV-2 RNA detection without RNA extraction and amplification by using a microfluidic biochip[J]. Chemistry, 2021(2022).
[105] NEW S Y, LEE S T, SU X D. DNA-templated silver nanocusters: structural correlation and fluorescence modulation[J]. Nanocale, 17729(2016).
[119] PREUSS J A, REICH P, BAHNER N et al. Impedimetric aptamer-based biosensors: applications[J]. Advances in Biochemical Engineering- Biotechnology, 43(2020).
[120] LOW S S, CHIA J S, TAN M T et al. A proof of concept: detection of avian influenza H5 gene by a graphene-enhanced electrochemical genosensor[J]. Journal of Nanoscience and Nanotechnology, 2438(2016).
[123] LI Q, LU N, WANG L H et al. Advances in nanowire transistor-based biosensors[J]. Small Methods, 170(2018).
[134] AYDIN E B, AYDIN M, SEZGINTURK M K. New impedimetric sandwich immunosensor for ultrasensitive and highly specific detection of spike receptor binding domain protein of SARS-CoV-2[J]. ACS Biomaterials Science Engneering, 3874(2021).
[155] AYTUR T, FOLEY J, ANWAR M et al. A novel magnetic bead bioassay platform using a microchip-based sensor for infectious disease diagnosis[J]. Journal of Immunological Methods, 21(2006).
[159] SCHOTTER J, KAMP P B, BECKER A et al. Comparison of a prototype magnetoresistive biosensor to standard fluorescent DNA detection[J]. Biosensors and Bioelectronics, 1149(2004).
[160] BAIBICH M N, BROTO J M, FERT A et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices[J]. Physical Review Letters, 2472(1988).
[175] CALVERT A E, BIGGERSTAFF B J, TANNER N A et al. Rapid colorimetric detection of Zika virus from serum and urine specimens by reverse transcription loop-mediated isothermal amplification (RT-LAMP)[J]. PLoS ONE, 0185340(2017).
[180] VILELA D, GONZALEZ M C, ESCARPA A. Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: chemical creativity behind the assay. a review[J]. Chemical Society Reviews, 24(2012).
[186] BÜYÜKSÜNETCI Y T, CITIL B E, TAPAN U et al. Development and application of a SARS-CoV-2 colorimetric biosensor based on the peroxidase-mimic activity of gamma-Fe2O3 nanoparticles[J]. Mikrochimica Acta, 335(2021).
[189] LEE J K, CHI Y S, S CHOI I. Reactivity of acetylenyl-terminated self-assembled monolayers on gold: triazole formation[J]. Langmuir, 3844(2004).
[191] KIMLING J, MAIER M, OKENVE B et al. Turkevich method for gold nanoparticle synthesis revisited[J]. The Journal of Chemical Physics, 15700(2006).
Get Citation
Copy Citation Text
Yanyan LI, Yusi PENG, Chenglong LIN, Xiaoying LUO, Zheng TENG, Xi ZHANG, Zhengren HUANG, Yong YANG.
Category:
Received: Apr. 12, 2022
Accepted: --
Published Online: Sep. 25, 2023
The Author Email: Zheng TENG (tengzheng@scdc.sh.cn), Yong YANG (yangyong@mail.sic.ac.cn)