Optics and Precision Engineering, Volume. 31, Issue 9, 1404(2023)

Spectral weighted sparse unmixing of hyperspectral images based on framelet transform

Chenguang XU, Hongyu XU, Chunyan YU, and Chengzhi DENG*
Author Affiliations
  • Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing,Nanchang Institute of Technology, Nanchang330099, China
  • show less
    References(23)

    [1] KESHAVA N, MUSTARD J F. Spectral unmixing[J]. IEEE Signal Processing Magazine, 19, 44-57(2002).

    [2] [2] 2徐晨光, 张绍泉, 李璠, 等. 高光谱遥感图像光谱加权稀疏解混算法分析和比较[J]. 南昌工程学院学报, 2020, 39(6): 87-93.XUCH G, ZHANGSH Q, LIF, et al. Analysis and comparison of spectral weighted sparse unmixing algorithms of hyperspectral remote sensing images[J]. Journal of Nanchang Institute of Technology, 2020, 39(6): 87-93.(in Chinese)

    [3] BOARDMAN J W. Automating spectral unmixing of AVIRIS data using convex geometry concepts[C], 11-14(1993).

    [4] [4] 4张少磊, 付光远, 汪洪桥, 等. 基于向量总变差约束局部光谱解混的高光谱图像超分辨[J]. 光学 精密工程, 2019, 27(12): 2683-2692. doi: 10.3788/ope.20192712.2683ZHANGSH L, FUG Y, WANGH Q, et al. Total-variation-regularized local spectral unmixing for hyperspectral image super-resolution[J]. Opt. Precision Eng., 2019, 27(12): 2683-2692.(in Chinese). doi: 10.3788/ope.20192712.2683

    [5] [5] 5张绍泉, 黄志浩, 邓承志, 等. 光谱加权协同稀疏和全变差正则化高光谱图像解混[J]. 电子学报, 2020, 48(12): 2453-2461. doi: 10.3969/j.issn.0372-2112.2020.12.022ZHANGSH Q, HUANGZH H, DENGCH ZH, et al. Spectral reweighted collaborative sparsity and total variation based hyperspectral unmixing method[J]. Acta Electronica Sinica, 2020, 48(12): 2453-2461.(in Chinese). doi: 10.3969/j.issn.0372-2112.2020.12.022

    [6] BHATT J S, JOSHI M V. Deep learning in hyperspectral unmixing: a review[C], 2189-2192(2021).

    [7] LI C, LI J, SUI C H et al. Spatial-spectral nonlinear hyperspectral unmixing under complex noise[J]. IEEE Sensors Journal, 22, 4338-4346(2022).

    [8] [8] 8贾麒, 廖守亿, 张作宇, 等. 重加权稀疏非负矩阵分解的高光谱解混[J]. 红外与激光工程, 2020, 49(S2): 283-299.JIAQ, LIAOSH Y, ZHANGZ Y, et al. Reweighted sparse nonnegative matrix decomposition for hyperspectral unmixing[J]. Infrared and Laser Engineering, 2020, 49(S2): 283-299.(in Chinese)

    [9] [9] 9徐晨光, 邓承志, 朱华生. 近似稀疏约束的多层非负矩阵分解高光谱解混[J]. 红外与激光工程, 2018, 47(11): 265-273. doi: 10.3788/irla201847.1117010XUCH G, DENGCH ZH, ZHUH SH. Approximate sparse regularized multilayer NMF for hyperspectral unmixing[J]. Infrared and Laser Engineering, 2018, 47(11): 265-273.(in Chinese). doi: 10.3788/irla201847.1117010

    [10] IORDACHE M D, PLAZA A, BIOUCAS-DIAS J. On the use of spectral libraries to perform sparse unmixing of hyperspectral data[C]. Iceland, 1-4(2010).

    [11] WANG P, SHEN X, NI K et al. Hyperspectral sparse unmixing based on multiple dictionary pruning[J]. International Journal of Remote Sensing, 43, 2712-2734(2022).

    [12] BIOUCAS-DIAS J M, FIGUEIREDO M A T. Alternating direction algorithms for constrained sparse regression: application to hyperspectral unmixing[C]. Iceland, 1-4(2010).

    [13] IORDACHE M D, BIOUCAS-DIAS J M, PLAZA A. Collaborative sparse regression for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 52, 341-354(2014).

    [14] ZHENG C Y, LI H, WANG Q et al. Reweighted sparse regression for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 54, 479-488(2016).

    [15] [15] 15李忠伟, 张浩, 王雷全, 等. 融合空谱-梯度特征的深度高光谱图像去噪[J]. 光学 精密工程, 2022, 30(5): 615-629. doi: 10.37188/ope.2021.0485LIZH W, ZHANGH, WANGL Q, et al. Deep hyperspectral image denoising by fusing space spectrum-gradient features[J]. Opt. Precision Eng., 2022, 30(5): 615-629.(in Chinese). doi: 10.37188/ope.2021.0485

    [16] XU C G, WU Z M, LI F et al. Spectral-spatial joint sparsity unmixing of hyperspectral images based on framelet transform[J]. Infrared Physics & Technology, 112, 103564(2021).

    [17] RAPIN J, BOBIN J, LARUE A et al. NMF with sparse regularizations in transformed domains[J]. SIAM Journal on Imaging Sciences, 7, 2020-2047(2014).

    [18] ZHANG G X, XU Y Y, FANG F M. Framelet-based sparse unmixing of hyperspectral images[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 25, 1516-1529(2016).

    [19] CAI J F, CHAN R H, SHEN Z W. A framelet-based image inpainting algorithm[J]. Applied and Computational Harmonic Analysis, 24, 131-149(2008).

    [20] JIANG T X, HUANG T Z, ZHAO X L et al. Matrix factorization for low-rank tensor completion using framelet prior[J]. Information Sciences, 436/437, 403-417(2018).

    [21] WANG R, LI H C, LIAO W Z et al. Double reweighted sparse regression for hyperspectral unmixing[C], 6986-6989(2016).

    [22] [22] 22刘敬, 李青妍, 刘逸. 基于核加权类对准则的高光谱影像特征提取[J]. 光学 精密工程, 2021, 29(6): 1397-1405. doi: 10.37188/OPE.20212906.1397LIUJ, LIQ Y, LIUY. Spectral feature extraction of hyperspectral remote sensing images based on kernel class pair-weighted criterion[J]. Opt. Precision Eng., 2021, 29(6): 1397-1405.(in Chinese). doi: 10.37188/OPE.20212906.1397

    [23] RASTI B, KOIRALA B, SCHEUNDERS P et al. UnDIP: hyperspectral unmixing using deep image prior[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-15(2022).

    Tools

    Get Citation

    Copy Citation Text

    Chenguang XU, Hongyu XU, Chunyan YU, Chengzhi DENG. Spectral weighted sparse unmixing of hyperspectral images based on framelet transform[J]. Optics and Precision Engineering, 2023, 31(9): 1404

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: May. 18, 2022

    Accepted: --

    Published Online: Jun. 6, 2023

    The Author Email: Chengzhi DENG (dengcz@nit.edu.cn)

    DOI:10.37188/OPE.20233109.1404

    Topics