Journal of Synthetic Crystals, Volume. 50, Issue 4, 762(2021)

Crystal Growth and Scintillation Luminescence Properties of Ti∶Al2O3 Crystals Grown with Kyropoulos Method

WANG Qingguo1、*, LIU Bo1, LUO Ping1, TANG Huili1, WU Feng1, KANG Sen2, DUAN Jinzhu3, WANG Qinfeng3, and XU Jun1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(20)

    [1] [1] MOULTON P F. Spectroscopic and laser characteristics of Ti∶Al2O3[J]. Josa B, 1986, 3(1): 125-133.

    [3] [3] BUSSIRE B, UTZA O, SANNER N, et al. Bulk laser-induced damage threshold of titanium-doped sapphire crystals[J]. Applied Optics, 2012, 51(32): 7826-7833.

    [4] [4] ANGLOHER G, BRUCKMAYER M, BUCCI C, et al. Limits on WIMP dark matter using sapphire cryogenic detectors[J]. Astroparticle Physics, 2002, 18(1): 43-55.

    [5] [5] LUCA M, CORON N, DUJARDIN C, et al. Scintillating and optical spectroscopy of Al2O3∶Ti for dark matter searches[J]. Nuclear Instruments and Methods in Physics Research A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 606(3): 545-551.

    [6] [6] MIKHAILIK V B, KRAUS H, BALCERZYK M, et al. Low-temperature spectroscopic and scintillation characterisation of Ti-doped Al2O3[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 546(3): 523-534.

    [7] [7] GALUNOV N Z, GORBACHEVA T E, GRINYOV B V, et al. Radiation resistant composite scintillators based on Al2O3∶Ti grains and their properties after irradiation[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 866: 104-110.

    [8] [8] MIKHAILIK V B, KRAUS H, WAHL D, et al. Luminescence studies of Ti-doped Al2O3 using vacuum ultraviolet synchrotron radiation[J]. Applied Physics Letters, 2005, 86(10): 101909.

    [9] [9] LACOVARA P, ESTEROWITZ L, KOKTA M. Growth, spectroscopy, and lasing of titanium-doped sapphire[J]. IEEE Journal of Quantum Electronics, 1985, 21(10): 1614-1618.

    [10] [10] UECKER R, KLIMM D, GANSCHOW S, et al. Czochralski growth of Ti∶sapphire laser crystals[C]//European Symposium on Optics and Photonics for Defence and Security. Proc SPIE 5990, Optically Based Materials and Optically Based Biological and Chemical Sensing for Defence II, Bruges, Belgium. 2005, 5990: 599006.

    [11] [11] JOYCE D B, SCHMID F. Progress in the growth of large scale Ti∶sapphire crystals by the heat exchanger method (HEM) for petawatt class lasers[J]. Journal of Crystal Growth, 2010, 312(8): 1138-1141.

    [12] [12] NING K J, LIU Y C, MA J, et al. Growth and characterization of large-scale Ti∶sapphire crystal using heat exchange method for ultra-fast ultra-high-power lasers[J]. CrystEngComm, 2015, 17(14): 2801-2805.

    [13] [13] DONG J, DENG P Z. Ti∶sapphire crystal used in ultrafast lasers and amplifiers[J]. Journal of Crystal Growth, 2004, 261(4): 514-519.

    [14] [14] NIZHANKOVSKIY S V, DAN’KO A Y, KRIVONOSOV E V, et al. Growth of large Ti∶ sapphire crystals by horizontal directional solidification in argon atmosphere[J]. Inorganic Materials, 2010, 46(1): 35-37.

    [15] [15] NEHARI A, BRENIER A, PANZER G, et al. Ti-doped sapphire (Al2O3) single crystals grown by the Kyropoulos technique and optical characterizations[J]. Crystal Growth & Design, 2011, 11(2): 445-448.

    [16] [16] ALOMBERT-GOGET G, SEN G, PEZZANI C, et al. Large Ti-doped sapphire single crystals grown by the Kyropoulos technique for petawatt power laser application[J]. Optical Materials, 2016, 61: 21-24.

    [17] [17] ALOMBERT-GOGET G, GUYOT Y, NEHARI A, et al. Scattering defect in large diameter titanium-doped sapphire crystals grown by the Kyropoulos technique[J]. CrystEngComm, 2018, 20(4): 412-419.

    [18] [18] STELIAN C, ALOMBERT-GOGET G, SEN G, et al. Interface effect on titanium distribution during Ti-doped sapphire crystals grown by the Kyropoulos method[J]. Optical Materials, 2017, 69: 73-80.

    [19] [19] GHEZAL E A, LI H, NEHARI A, et al. Effect of pulling rate on bubbles distribution in sapphire crystals grown by the micropulling down (μ-PD) technique[J]. Crystal Growth & Design, 2012, 12(8): 4098-4103.

    [20] [20] LI H, GHEZAL E A, ALOMBERT-GOGET G, et al. Qualitative and quantitative bubbles defects analysis in undoped and Ti-doped sapphire crystals grown by Czochralski technique[J]. Optical Materials, 2014, 37: 132-138.

    [21] [21] LI H, GHEZAL E A, NEHARI A, et al. Bubbles defects distribution in sapphire bulk crystals grown by Czochralski technique[J]. Optical Materials, 2013, 35(5): 1071-1076.

    Tools

    Get Citation

    Copy Citation Text

    WANG Qingguo, LIU Bo, LUO Ping, TANG Huili, WU Feng, KANG Sen, DUAN Jinzhu, WANG Qinfeng, XU Jun. Crystal Growth and Scintillation Luminescence Properties of Ti∶Al2O3 Crystals Grown with Kyropoulos Method[J]. Journal of Synthetic Crystals, 2021, 50(4): 762

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 7, 2021

    Accepted: --

    Published Online: Jul. 13, 2021

    The Author Email: Qingguo WANG (qgwang@tongji.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics