Laser & Optoelectronics Progress, Volume. 61, Issue 9, 0914010(2024)

Microstructure and Mechanical Properties of TiAl Alloy Prepared by Laser Melting Deposition

Feng Zhang1,2, Hangyu Yue2, Bingbing Sun1,3、*, Ruifeng Li2, Haisheng Zhao1,3, Youxing Yao2, and Yibin Pang1
Author Affiliations
  • 1HFYC (Zhenjiang) Additive Manufacturing Co., Ltd., Zhenjiang 212132, Jiangsu, China
  • 2School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
  • 3AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
  • show less
    References(34)

    [1] Liu C T, Schneibel J H, Maziasz P J et al. Tensile properties and fracture toughness of TiAl alloys with controlled microstructures[J]. Intermetallics, 4, 429-440(1996).

    [2] Karthikeyan S, Viswanathan G B, Gouma P I et al. Mechanisms and effect of microstructure on creep of TiAl-based alloys[J]. Materials Science and Engineering: A, 329/330/331, 621-630(2002).

    [3] Yue H Y, Yao Y X, Yang J B et al. Effect of heat treatment on the microstructure and microhardness of TiAl alloy produced via selective electron beam melting[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 36, 22-26(2022).

    [4] Yue H Y, Liang Z Q, Zhang F et al. Effect of heat treatment on the microstructure and creep properties of Ti-48Al-2Cr-2Nb alloy produced by selective electron beam melting[J]. Materials Science and Engineering: A, 859, 144224(2022).

    [5] Appel F, Oehring M, Wagner R. Novel design concepts for gamma-base titanium aluminide alloys[J]. Intermetallics, 8, 1283-1312(2000).

    [6] Wu X H. Review of alloy and process development of TiAl alloys[J]. Intermetallics, 14, 1114-1122(2006).

    [7] Yang R. Advances and challenges of TiAl base alloys[J]. Acta Metallurgica Sinica, 51, 129-147(2015).

    [8] Bewlay B P, Nag S, Suzuki A et al. TiAl alloys in commercial aircraft engines[J]. Materials at High Temperatures, 33, 549-559(2016).

    [9] Xie Y, Teng Q, Shen M Y et al. Study on microstructure and properties of overlap region of GH3536 alloy processed by multi-laser powder bed fusion[J]. Chinese Journal of Lasers, 50, 0802004(2023).

    [10] Zhang S S, Zhang B P, Zhang W Q et al. Densification behavior and microstructure and properties of high copper alloy formed by laser selective melting[J]. Chinese Journal of Lasers, 49, 1602005(2022).

    [11] Yu Q, Wang C S, Dong C. Study on microstructure and properties of Ni-Cr-Al base alloy system made by laser additive[J]. Chinese Journal of Lasers, 49, 1402104(2022).

    [12] Yue H Y, Peng H, Li R F et al. Effect of heat treatment on the microstructure and anisotropy of tensile properties of TiAl alloy produced via selective electron beam melting[J]. Materials Science and Engineering: A, 803, 140473(2021).

    [13] Gao B, Peng H, Liang Y et al. Electron beam melted TiC/high Nb-TiAl nanocomposite: microstructure and mechanical property[J]. Materials Science and Engineering: A, 811, 141059(2021).

    [14] Kan W, Chen B, Peng H et al. Formation of columnar lamellar colony grain structure in a high Nb-TiAl alloy by electron beam melting[J]. Journal of Alloys and Compounds, 809, 151673(2019).

    [15] Yue H Y, Peng H, Li R F et al. Metastable phase and microstructural degradation of a TiAl alloy produced via selective electron beam melting[J]. Vacuum, 192, 110491(2021).

    [16] Sharman A R C, Hughes J I, Ridgway K. Characterisation of titanium aluminide components manufactured by laser metal deposition[J]. Intermetallics, 93, 89-92(2018).

    [17] Lee S, Kim J, Choe J et al. Understanding crack formation mechanisms of Ti-48Al-2Cr-2Nb single tracks during laser powder bed fusion[J]. Metals and Materials International, 27, 78-91(2021).

    [18] Perevoshchikova N, Rigaud J, Sha Y et al. Optimisation of selective laser melting parameters for the Ni-based superalloy IN-738 LC using Doehlert’s design[J]. Rapid Prototyping Journal, 23, 881-892(2017).

    [19] Srivastava D, Chang I T H, Loretto M H. The optimisation of processing parameters and characterisation of microstructure of direct laser fabricated TiAl alloy components[J]. Materials & Design, 21, 425-433(2000).

    [20] Liu Z Y. Study on forming process, microstructure and properties of TiAl-based alloy deposited by laser melting[D], 6-7(2020).

    [21] Liu Z Q, Wang W B, Ma R X et al. Microstructure and properties of gamma-TiAl alloy fabricated by laser melting deposition[J]. Rare Metal Materials and Engineering, 49, 1925-1930(2020).

    [22] Liu W P, DuPont J N. Fabrication of carbide-particle-reinforced titanium aluminide-matrix composites by laser-engineered net shaping[J]. Metallurgical and Materials Transactions A, 35, 1133-1140(2004).

    [23] Thomas M, Malot T, Aubry P et al. The prospects for additive manufacturing of bulk TiAl alloy[J]. Materials at High Temperatures, 33, 571-577(2016).

    [24] Moghimian P, Poirié T, Habibnejad-Korayem M et al. Metal powders in additive manufacturing: a review on reusability and recyclability of common titanium, nickel and aluminum alloys[J]. Additive Manufacturing, 43, 102017(2021).

    [25] Wang Y. Simulation study on morphology characteristics of laser deposited layer and molten pool of IN718 alloy by coaxial powder feeding[D](2020).

    [26] Ye C. Morphology prediction and microstructure study of laser cladding layer based on VOF method[D](2020).

    [27] Wang L, Zhang Y L, Hua X M et al. Fabrication of γ-TiAl intermetallic alloy using the twin-wire plasma arc additive manufacturing process: microstructure evolution and mechanical properties[J]. Materials Science and Engineering: A, 812, 141056(2021).

    [28] Wang J W, Luo Q, Wang H M et al. Microstructure characteristics and failure mechanisms of Ti-48Al-2Nb-2Cr titanium aluminide intermetallic alloy fabricated by directed energy deposition technique[J]. Additive Manufacturing, 32, 101007(2020).

    [29] Imayev R M, Salishchev G A, Shagiev M R et al. Low-temperature superplasticity of submicrocrystalline intermetallics[J]. Materials Science Forum, 304/305/306, 195-200(1999).

    [30] Liu Z Q, Wang C Y, Wang W B et al. Effects of tantalum on the microstructure and properties of Ti-48Al-2Cr-2Nb alloy fabricated via laser additive manufacturing[J]. Materials Characterization, 179, 111317(2021).

    [31] Guo Y F, Chen Y Y, Xiao S L et al. Influence of nano-Y2O3 addition on microstructure and tensile properties of high-Al TiAl alloys[J]. Materials Science and Engineering: A, 794, 139803(2020).

    [32] Hu D, Godfrey A, Blenkinsop P A et al. Processing-property-microstructure relationships in TiAl-based alloys[J]. Metallurgical and Materials Transactions A, 29, 919-925(1998).

    [33] Zhang X Y, Li C W, Zheng M Y et al. Anisotropic tensile behavior of Ti-47Al-2Cr-2Nb alloy fabricated by direct laser deposition[J]. Additive Manufacturing, 32, 101087(2020).

    [34] Imayev V M, Salishchev G A, Shagiev M R et al. Low-temperature superplasticity of submicrocrystalline Ti-48Al-2Nb-2Cr alloy produced by multiple forging[J]. Scripta Materialia, 40, 183-190(1998).

    Tools

    Get Citation

    Copy Citation Text

    Feng Zhang, Hangyu Yue, Bingbing Sun, Ruifeng Li, Haisheng Zhao, Youxing Yao, Yibin Pang. Microstructure and Mechanical Properties of TiAl Alloy Prepared by Laser Melting Deposition[J]. Laser & Optoelectronics Progress, 2024, 61(9): 0914010

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Apr. 23, 2023

    Accepted: Jul. 12, 2023

    Published Online: May. 6, 2024

    The Author Email: Bingbing Sun (sunbingbing2005@163.com)

    DOI:10.3788/LOP231142

    CSTR:32186.14.LOP231142

    Topics