Acta Optica Sinica, Volume. 43, Issue 12, 1228001(2023)

Synthetic Aperture Radar Image Change Detection Based on Difference Image Construction of Log-Hyperbolic Cosine Ratio and Multi-Region Feature Convolution Extreme Learning Machine

Zhikang Lin1, Wei Liu1、*, Chaoyang Niu1, Gui Gao2, and Wanjie Lu1
Author Affiliations
  • 1School of Data and Target Engineering, PLA Strategic Support Force Information Engineering University,Zhengzhou 450000, Henan, China
  • 2Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, Sichuan, China
  • show less
    Figures & Tables(14)
    Flow chart of proposed method
    Generation process of log-hyperbolic cosine ratio (LHCR) difference image (DI)
    Multi-region feature extraction
    Multi-temporal SAR images and their change references. The first row is Yellow River dataset A, the second row is Yellow River dataset B, the third row is Zhengzhou flood dataset C, and the fourth row is Zhengzhou flood dataset D. (a) Images at time 1; (b) images at time 2; (c) change reference images
    Final change detection images of Yellow River dataset A. (a) NR_ELM; (b) GarborPCANet; (c) CWNN; (d) DDNet;(e) LHCR_MRFCELM; (f) change reference image
    Final change detection images of Yellow River dataset B. (a) NR_ELM; (b) GarborPCANet; (c) CWNN; (d) DDNet;(e) LHCR_MRFCELM; (f) change reference image
    Final change detection images of Zhengzhou flood dataset C. (a) NR_ELM; (b) GarborPCANet; (c) CWNN; (d) DDNet;(e) LHCR_MRFCELM; (f) change reference image
    Final change detection images of Zhengzhou flood dataset D. (a) NR_ELM; (b) GarborPCANet; (c) CWNN; (d) DDNet;(e) LHCR_MRFCELM; (f) change reference image
    Difference image analysis chart
    Results of three DI. (a) Proposed LHCR DI; (b) log-ratio DI; (c) neighborhood-based ratio DI
    Change detection results of NR_ELM and MRFCELM for three DI generation methods. (a) LHCR_ELM, Kappa value is 0.6364; (b) LR_ELM, Kappa value is 0.6473; (c) NR_ELM, Kappa value is 0.5967; (d) LHCR_MRFCELM, Kappa value is 0.6950; (e) LR_MRFCELM, Kappa value is 0.3973; (f) NR_ MRFCELM, Kappa value is 0.6454
    Relationship between different sample block sizes and PCC
    • Table 1. SAR dataset parameters

      View table

      Table 1. SAR dataset parameters

      DatasetYellow River dataset AYellow River dataset BZhengzhou flood dataset CZhengzhou flood dataset D
      SensorRadarsat-2Radarsat-2Gaofen-3Gaofen-3
      Location

      Yellow River,

      China

      Yellow River,

      China

      Zhengzhou,

      China

      Zhengzhou,

      China

      Data

      2008.06

      2009.06

      2008.06

      2009.06

      2021.07.20

      2021.07.24

      2021.07.20

      2021.07.24

      Size296×184233×356300×300300×300
      ChangeWater fades

      Water flooding and

      water fades

      Flood disaster

      Water fades and

      farm irrigation

    • Table 2. Evaluation metrics of different methods on four datasets

      View table

      Table 2. Evaluation metrics of different methods on four datasets

      MethodYellow River dataset A
      FNFPOEPCC /%k /%t /s
      NR_ELM13992693598.2855.043.9
      GarborPCANet2332078208196.1935.341755.3
      CWNN2191667167696.9240.24281.4
      DDNet22212492251395.3930.19287.8
      LHCR_MRFCELM6510016599.7086.4420.7
      MethodYellow River dataset B
      FNFPOEPCC /%k /%t /s
      NR_ELM13944221116598.6074.738.6
      GarborPCANet231782049222797.3268.343472.8
      CWNN21111101621027387.6229.99259.7
      DDNet221514856500793.9648.28312.1
      LHCR_MRFCELM603696129998.4375.8221.7
      MethodZhengzhou flood dataset C
      FNFPOEPCC /%k /%t /s
      NR_ELM13312716314396.5176.445.6
      GarborPCANet23325713327096.3775.291593.9
      CWNN211989108209797.6785.37282.4
      DDNet222886112299896.6777.98266.4
      LHCR_MRFCELM1633390202397.7586.3719.6
      MethodZhengzhou flood dataset D
      FNFPOEPCC /%k /%t /s
      NR_ELM133388537392595.6359.675.8
      GarborPCANet233385374375995.8259.381537.3
      CWNN21433152821571582.5436.08319.4
      DDNet227307136786691.2654.63352.6
      LHCR_MRFCELM20651362342796.1969.5021.2
    Tools

    Get Citation

    Copy Citation Text

    Zhikang Lin, Wei Liu, Chaoyang Niu, Gui Gao, Wanjie Lu. Synthetic Aperture Radar Image Change Detection Based on Difference Image Construction of Log-Hyperbolic Cosine Ratio and Multi-Region Feature Convolution Extreme Learning Machine[J]. Acta Optica Sinica, 2023, 43(12): 1228001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Jul. 18, 2022

    Accepted: Sep. 22, 2022

    Published Online: Jun. 20, 2023

    The Author Email: Liu Wei (greatliuliu@163.com)

    DOI:10.3788/AOS221491

    Topics