APPLIED LASER, Volume. 44, Issue 12, 165(2024)
Application of Advanced Spectral Analysis Technology in the Field of Blood Stain Aging
[3] [3] SAUER E, REINKE A K, COURTS C. Differentiation of five body fluids from forensic samples by expression analysis of four microRNAs using quantitative PCR[J]. Forensic Science International Genetics, 2016, 22: 89-99.
[4] [4] DAS T, HARSHEY A, NIGAM K, et al. Analytical approaches for bloodstain aging by vibrational spectroscopy: Current trends and future perspectives[J]. Microchemical Journal, 2020, 158: 105278.
[5] [5] BREMMER R H, DE BRUIN K G, VAN GEMERT M J C, et al. Forensic quest for age determination of bloodstains[J]. Forensic Science International, 2012, 216(1/2/3): 1-11.
[7] [7] ZADORA G, MENYK A. In the pursuit of the holy grail of forensic science-Spectroscopic studies on the estimation of time since deposition of bloodstains[J]. TrAC Trends in Analytical Chemistry, 2018, 105: 137-165.
[12] [12] ARRAUD N, LINARES R, TAN S, et al. Extracellular vesicles from blood plasma: Determination of their morphology, size, phenotype and concentration[J]. Journal of Thrombosis and Haemostasis, 2014, 12(5): 614-627.
[13] [13] WAN H T, LEUNG P Y, ZHAO Y G, et al. Blood plasma concentrations of endocrine disrupting chemicals in Hong Kong populations[J]. Journal of Hazardous Materials, 2013, 261: 763-769.
[18] [18] EDELMAN G, MANTI V, VAN RUTH S M, et al. Identification and age estimation of blood stains on colored backgrounds by near infrared spectroscopy[J]. Forensic Science International, 2012, 220(1/2/3): 239-244.
[19] [19] LIN H C, ZHANG Y M, WANG Q, et al. Estimation of the age of human bloodstains under the simulated indoor and outdoor crime scene conditions by ATR-FTIR spectroscopy[J]. Scientific Reports, 2017, 7(1): 13254.
[20] [20] KUMAR R, SHARMA K, SHARMA V. Bloodstain age estimation through infrared spectroscopy and Chemometric models[J]. Science & Justice, 2020, 60(6): 538-546.
[21] [21] DOTY K C, LEDNEV I K. Differentiating donor age groups based on Raman spectroscopy of bloodstains for forensic purposes[J]. ACS Central Science, 2018, 4(7): 862-867.
[22] [22] CISTOLA D P, ROBINSON M D. Compact NMR relaxometry of human blood and blood components[J]. Trends in Analytical Chemistry, 2016, 83(A): 53-64.
[23] [23] KEY N S, MACKMAN N. Tissue factor and its measurement in whole blood, plasma, and microparticles[J]. Seminars in Thrombosis and Hemostasis, 2010, 36(8): 865-875.
[24] [24] CHANG H, WAN Y, NAILE J, et al. Simultaneous quantification of multiple classes of phenolic compounds in blood plasma by liquid chromatography-electrospray tandem mass spectrometry[J]. Journal of Chromatography A, 2010, 1217(4): 506-513.
[25] [25] HOUSELEY J, TOLLERVEY D. The many pathways of RNA degradation[J]. Cell, 2009, 136(4): 763-776.
[26] [26] LECH K, ACKERMANN K, WOLLSTEIN A, et al. Assessing the suitability of miRNA-142-5p and miRNA-541 for bloodstain deposition timing[J]. Forensic Science International Genetics, 2014, 12: 181-184.
[27] [27] ARANY S, OHTANI S. Age estimation of bloodstains: A preliminary report based on aspartic acid racemization rate[J]. Forensic Science International, 2011, 212(1/2/3): e36-e39.
[28] [28] CHAO K,XUEJIAO Z, LEI C, et al.Obsolescence degree of bloodstain in non-porous object detected by micro spectrophotometer method[J]. Open Journal of Nature Science, 2016, 4(2): 145-155.
[29] [29] BOSSCHAART N, EDELMAN G J, AALDERS M C G, et al. A literature review and novel theoretical approach on the optical properties of whole blood[J]. Lasers in Medical Science, 2014, 29(2): 453-479.
[30] [30] DOTY K C, MURO C K, LEDNEV I K. Predicting the time of the crime: Bloodstain aging estimation for up to two years[J]. Forensic Chemistry, 2017, 5: 1-7.
[31] [31] WANG K, YUAN Y, HAN S, et al. Application of attenuated total reflectance Fourier transform infrared (ATR-FTIR) and principal component analysis (PCA) for quick identifying of the bitumen produced by different manufacturers[J]. Road Materials and Pavement Design, 2018, 19(8): 1940-1949.
[32] [32] CHILCOTE B, RUST L, NIZIO K D, et al. Profiling the scent of weathered training aids for blood-detection dogs[J]. Science & Justice, 2018, 58(2): 98-108.
[33] [33] RUST L, NIZIO K D, FORBES S L. The influence of ageing and surface type on the odour profile of blood-detection dog training aids[J]. Analytical and Bioanalytical Chemistry, 2016, 408(23): 6349-6360.
[34] [34] PATTERSON D. Use of reflectance measurements in assessing the colour changes of ageing bloodstains[J]. Nature, 1960, 187: 688-689.
[35] [35] SUN H M, DONG Y F, ZHANG P L, et al. Accurate age estimation of bloodstains based on visible reflectance spectroscopy and chemometrics methods[J]. IEEE Photonics Journal, 2017, 9(1): 1-14.
[36] [36] WEBER A R, LEDNEV I K. Crime clock-analytical studies for approximating time since deposition of bloodstains[J]. Forensic Chemistry, 2020, 19: 100248.
[37] [37] BOTONJIC-SEHIC E, BROWN C, LAMONTAGNE M, et al. Forensic application of near-infrared spectroscopy: Aging of bloodstains[J]. Spectroscopy, 2009, 24(2): 42.
[38] [38] MARRONE A, BALLANTYNE J. Changes in dry state hemoglobin over time do not increase the potential for oxidative DNA damage in dried blood[J]. PLoS One, 2009, 4(4): e5110.
[39] [39] HANSON E K, BALLANTYNE J. A blue spectral shift of the hemoglobin soret band correlates with the age (time since deposition) of dried bloodstains[J]. PLoS One, 2010, 5(9): e12830.
[40] [40] LI B, BEVERIDGE P, O′HARE W T, et al. The estimation of the age of a blood stain using reflectance spectroscopy with a microspectrophotometer, spectral pre-processing and linear discriminant analysis[J]. Forensic Science International, 2011, 212(1/2/3): 198-204.
[41] [41] JAMES S H, KISH P E, SUTTON T P. Principles of bloodstain pattern analysis: Theory and practice[M]. Boca Raton: CRC Press, 2005.
[43] [43] NOON R K. Forensic science: An introduction to scientific and investigative techniques[M]. Boca Raton: CRC Press, 2002.
[45] [45] KOBILINSKY L F. Forensic chemistry handbook[M]. Hoboken, NJ: John Wiley & Sons, 2012.
[46] [46] ELKINS K M. Rapid presumptive “fingerprinting” of body fluids and materials by ATR FT-IR spectroscopy[J]. Journal of Forensic Sciences, 2011, 56(6): 1580-1587.
[47] [47] VIRKLER K, LEDNEV I K. Raman spectroscopic signature of blood and its potential application to forensic body fluid identification[J]. Analytical and Bioanalytical Chemistry, 2010, 396(1): 525-534.
[48] [48] DOTY K C, MCLAUGHLIN G, LEDNEV I K. A Raman “spectroscopic clock” for bloodstain age determination: The first week after deposition[J]. Analytical and Bioanalytical Chemistry, 2016, 408(15): 3993-4001.
[49] [49] CASTRO D M, COYLE H M. Biological evidence collection and forensic blood identification[J]. Forensic Science Department Henry C Lee College of Criminal Justice & Forensic Science University of New Haven, 2013, 300(3): 1221-1229.
[50] [50] BROOKE H, BARANOWSKI M R, MCCUTCHEON J N, et al. Multimode imaging in the thermal infrared for chemical contrast enhancement. Part 2: Simulation driven design[J]. Analytical Chemistry, 2010, 82(20): 8421-8426.
[51] [51] VANDENBERG N, VAN OORSCHOT R A H. The use of polilight in the detection of seminal fluid, saliva, and bloodstains and comparison with conventional chemical-based screening tests[J]. Journal of Forensic Sciences, 2006, 51(2): 361-370.
[52] [52] ROSENBLATT R, HALMKOV L, DOTY K C, et al. Raman spectroscopy for forensic bloodstain identification: Method validation vs. environmental interferences[J]. Forensic Chemistry, 2019, 16: 100175.
[53] [53] JOHN A, ETERNO E, CLIFF R, et al. The detective′s handbook[M]. CRC Press, 2017.
[54] [54] TAKAMURA A, WATANABE D, SHIMADA R, et al. Comprehensive modeling of bloodstain aging by multivariate Raman spectral resolution with kinetics[J]. Communications Chemistry, 2019, 2: 115.
[55] [55] ATKINS C G, BUCKLEY K, BLADES M W, et al. Raman spectroscopy of blood and blood components[J]. Applied Spectroscopy, 2017, 71(5): 767-793.
[56] [56] EDELMAN G, VAN LEEUWEN T G, AALDERS M C G. Hyperspectral imaging for the age estimation of blood stains at the crime scene[J]. Forensic Science International, 2012, 223(1/2/3): 72-77.
[57] [57] KUULA J, PUUPPONEN H H, RINTA H, et al. The challenges of analysing blood stains with hyperspectral imaging[C]//SPIE Proceedings", "Sensing Technologies for Global Health, Military Medicine, and Environmental Monitoring IV. Baltimore, Maryland, USA: SPIE, 2014: 393-401.
[58] [58] LI B, BEVERIDGE P, O′HARE W T, et al. The application of visible wavelength reflectance hyperspectral imaging for the detection and identification of blood stains[J]. Science & Justice, 2014, 54(6): 432-438.
[60] [60] MIKI T, KAI A, IKEYA M. Electron spin resonance of bloodstains and its application to the estimation of time after bleeding[J]. Forensic Science International, 1987, 35(2/3): 149-158.
[61] [61] FUJITA Y, TSUCHIYA K, ABE S, et al. Estimation of the age of human bloodstains by electron paramagnetic resonance spectroscopy: Long-term controlled experiment on the effects of environmental factors[J]. Forensic Science International, 2005, 152(1): 39-43.
[62] [62] SAKURAI H, TSUCHIYA K, FUJITA Y, et al. Dating of human blood by electron spin resonance spectroscopy[J]. Naturwissenschaften, 1989, 76(1): 24-25.
[63] [63] WITTENBERG J B, WITTENBERG B A, PEISACH J, et al. On the state of the iron and the nature of the ligand in oxyhemoglobin[J]. Proceedings of the National Academy of Sciences of the United States of America, 1970, 67(4): 1846-1853.
[64] [64] PEISACH J, BLUMBERG W E, WITTENBERG B A, et al. Hemoglobin A: An electron paramagnetic resonance study of the effects of interchain contacts on the heme symmetry of high-spin and low-spin derivatives of ferric alpha chains[J]. Proceedings of the National Academy of Sciences of the United States of America, 1969, 63(3): 934-939.
[65] [65] DULISKA I, TARGOSZ M, STROJNY W, et al. Stiffness of normal and pathological erythrocytes studied by means of atomic force microscopy[J]. Journal of Biochemical and Biophysical Methods, 2006, 66(1/2/3): 1-11.
[66] [66] STRASSER S, ZINK A, KADA G, et al. Age determination of blood spots in forensic medicine by force spectroscopy[J]. Forensic Science International, 2007, 170(1): 8-14.
Get Citation
Copy Citation Text
Qin Ge, Zhang Zhen, Wu Shihao, Liu Jiatong, Jia Zhenjun. Application of Advanced Spectral Analysis Technology in the Field of Blood Stain Aging[J]. APPLIED LASER, 2024, 44(12): 165
Received: Mar. 16, 2023
Accepted: Mar. 11, 2025
Published Online: Mar. 11, 2025
The Author Email: Zhenjun Jia (zhenjunjia@163.com)