APPLIED LASER, Volume. 44, Issue 12, 165(2024)

Application of Advanced Spectral Analysis Technology in the Field of Blood Stain Aging

Qin Ge, Zhang Zhen, Wu Shihao, Liu Jiatong, and Jia Zhenjun*
Author Affiliations
  • School of Investigation, People′s Public Security University of China,Beijing, 100038, China
  • show less
    References(52)

    [3] [3] SAUER E, REINKE A K, COURTS C. Differentiation of five body fluids from forensic samples by expression analysis of four microRNAs using quantitative PCR[J]. Forensic Science International Genetics, 2016, 22: 89-99.

    [4] [4] DAS T, HARSHEY A, NIGAM K, et al. Analytical approaches for bloodstain aging by vibrational spectroscopy: Current trends and future perspectives[J]. Microchemical Journal, 2020, 158: 105278.

    [5] [5] BREMMER R H, DE BRUIN K G, VAN GEMERT M J C, et al. Forensic quest for age determination of bloodstains[J]. Forensic Science International, 2012, 216(1/2/3): 1-11.

    [7] [7] ZADORA G, MENYK A. In the pursuit of the holy grail of forensic science-Spectroscopic studies on the estimation of time since deposition of bloodstains[J]. TrAC Trends in Analytical Chemistry, 2018, 105: 137-165.

    [12] [12] ARRAUD N, LINARES R, TAN S, et al. Extracellular vesicles from blood plasma: Determination of their morphology, size, phenotype and concentration[J]. Journal of Thrombosis and Haemostasis, 2014, 12(5): 614-627.

    [13] [13] WAN H T, LEUNG P Y, ZHAO Y G, et al. Blood plasma concentrations of endocrine disrupting chemicals in Hong Kong populations[J]. Journal of Hazardous Materials, 2013, 261: 763-769.

    [18] [18] EDELMAN G, MANTI V, VAN RUTH S M, et al. Identification and age estimation of blood stains on colored backgrounds by near infrared spectroscopy[J]. Forensic Science International, 2012, 220(1/2/3): 239-244.

    [19] [19] LIN H C, ZHANG Y M, WANG Q, et al. Estimation of the age of human bloodstains under the simulated indoor and outdoor crime scene conditions by ATR-FTIR spectroscopy[J]. Scientific Reports, 2017, 7(1): 13254.

    [20] [20] KUMAR R, SHARMA K, SHARMA V. Bloodstain age estimation through infrared spectroscopy and Chemometric models[J]. Science & Justice, 2020, 60(6): 538-546.

    [21] [21] DOTY K C, LEDNEV I K. Differentiating donor age groups based on Raman spectroscopy of bloodstains for forensic purposes[J]. ACS Central Science, 2018, 4(7): 862-867.

    [22] [22] CISTOLA D P, ROBINSON M D. Compact NMR relaxometry of human blood and blood components[J]. Trends in Analytical Chemistry, 2016, 83(A): 53-64.

    [23] [23] KEY N S, MACKMAN N. Tissue factor and its measurement in whole blood, plasma, and microparticles[J]. Seminars in Thrombosis and Hemostasis, 2010, 36(8): 865-875.

    [24] [24] CHANG H, WAN Y, NAILE J, et al. Simultaneous quantification of multiple classes of phenolic compounds in blood plasma by liquid chromatography-electrospray tandem mass spectrometry[J]. Journal of Chromatography A, 2010, 1217(4): 506-513.

    [25] [25] HOUSELEY J, TOLLERVEY D. The many pathways of RNA degradation[J]. Cell, 2009, 136(4): 763-776.

    [26] [26] LECH K, ACKERMANN K, WOLLSTEIN A, et al. Assessing the suitability of miRNA-142-5p and miRNA-541 for bloodstain deposition timing[J]. Forensic Science International Genetics, 2014, 12: 181-184.

    [27] [27] ARANY S, OHTANI S. Age estimation of bloodstains: A preliminary report based on aspartic acid racemization rate[J]. Forensic Science International, 2011, 212(1/2/3): e36-e39.

    [28] [28] CHAO K,XUEJIAO Z, LEI C, et al.Obsolescence degree of bloodstain in non-porous object detected by micro spectrophotometer method[J]. Open Journal of Nature Science, 2016, 4(2): 145-155.

    [29] [29] BOSSCHAART N, EDELMAN G J, AALDERS M C G, et al. A literature review and novel theoretical approach on the optical properties of whole blood[J]. Lasers in Medical Science, 2014, 29(2): 453-479.

    [30] [30] DOTY K C, MURO C K, LEDNEV I K. Predicting the time of the crime: Bloodstain aging estimation for up to two years[J]. Forensic Chemistry, 2017, 5: 1-7.

    [31] [31] WANG K, YUAN Y, HAN S, et al. Application of attenuated total reflectance Fourier transform infrared (ATR-FTIR) and principal component analysis (PCA) for quick identifying of the bitumen produced by different manufacturers[J]. Road Materials and Pavement Design, 2018, 19(8): 1940-1949.

    [32] [32] CHILCOTE B, RUST L, NIZIO K D, et al. Profiling the scent of weathered training aids for blood-detection dogs[J]. Science & Justice, 2018, 58(2): 98-108.

    [33] [33] RUST L, NIZIO K D, FORBES S L. The influence of ageing and surface type on the odour profile of blood-detection dog training aids[J]. Analytical and Bioanalytical Chemistry, 2016, 408(23): 6349-6360.

    [34] [34] PATTERSON D. Use of reflectance measurements in assessing the colour changes of ageing bloodstains[J]. Nature, 1960, 187: 688-689.

    [35] [35] SUN H M, DONG Y F, ZHANG P L, et al. Accurate age estimation of bloodstains based on visible reflectance spectroscopy and chemometrics methods[J]. IEEE Photonics Journal, 2017, 9(1): 1-14.

    [36] [36] WEBER A R, LEDNEV I K. Crime clock-analytical studies for approximating time since deposition of bloodstains[J]. Forensic Chemistry, 2020, 19: 100248.

    [37] [37] BOTONJIC-SEHIC E, BROWN C, LAMONTAGNE M, et al. Forensic application of near-infrared spectroscopy: Aging of bloodstains[J]. Spectroscopy, 2009, 24(2): 42.

    [38] [38] MARRONE A, BALLANTYNE J. Changes in dry state hemoglobin over time do not increase the potential for oxidative DNA damage in dried blood[J]. PLoS One, 2009, 4(4): e5110.

    [39] [39] HANSON E K, BALLANTYNE J. A blue spectral shift of the hemoglobin soret band correlates with the age (time since deposition) of dried bloodstains[J]. PLoS One, 2010, 5(9): e12830.

    [40] [40] LI B, BEVERIDGE P, O′HARE W T, et al. The estimation of the age of a blood stain using reflectance spectroscopy with a microspectrophotometer, spectral pre-processing and linear discriminant analysis[J]. Forensic Science International, 2011, 212(1/2/3): 198-204.

    [41] [41] JAMES S H, KISH P E, SUTTON T P. Principles of bloodstain pattern analysis: Theory and practice[M]. Boca Raton: CRC Press, 2005.

    [43] [43] NOON R K. Forensic science: An introduction to scientific and investigative techniques[M]. Boca Raton: CRC Press, 2002.

    [45] [45] KOBILINSKY L F. Forensic chemistry handbook[M]. Hoboken, NJ: John Wiley & Sons, 2012.

    [46] [46] ELKINS K M. Rapid presumptive “fingerprinting” of body fluids and materials by ATR FT-IR spectroscopy[J]. Journal of Forensic Sciences, 2011, 56(6): 1580-1587.

    [47] [47] VIRKLER K, LEDNEV I K. Raman spectroscopic signature of blood and its potential application to forensic body fluid identification[J]. Analytical and Bioanalytical Chemistry, 2010, 396(1): 525-534.

    [48] [48] DOTY K C, MCLAUGHLIN G, LEDNEV I K. A Raman “spectroscopic clock” for bloodstain age determination: The first week after deposition[J]. Analytical and Bioanalytical Chemistry, 2016, 408(15): 3993-4001.

    [49] [49] CASTRO D M, COYLE H M. Biological evidence collection and forensic blood identification[J]. Forensic Science Department Henry C Lee College of Criminal Justice & Forensic Science University of New Haven, 2013, 300(3): 1221-1229.

    [50] [50] BROOKE H, BARANOWSKI M R, MCCUTCHEON J N, et al. Multimode imaging in the thermal infrared for chemical contrast enhancement. Part 2: Simulation driven design[J]. Analytical Chemistry, 2010, 82(20): 8421-8426.

    [51] [51] VANDENBERG N, VAN OORSCHOT R A H. The use of polilight in the detection of seminal fluid, saliva, and bloodstains and comparison with conventional chemical-based screening tests[J]. Journal of Forensic Sciences, 2006, 51(2): 361-370.

    [52] [52] ROSENBLATT R, HALMKOV L, DOTY K C, et al. Raman spectroscopy for forensic bloodstain identification: Method validation vs. environmental interferences[J]. Forensic Chemistry, 2019, 16: 100175.

    [53] [53] JOHN A, ETERNO E, CLIFF R, et al. The detective′s handbook[M]. CRC Press, 2017.

    [54] [54] TAKAMURA A, WATANABE D, SHIMADA R, et al. Comprehensive modeling of bloodstain aging by multivariate Raman spectral resolution with kinetics[J]. Communications Chemistry, 2019, 2: 115.

    [55] [55] ATKINS C G, BUCKLEY K, BLADES M W, et al. Raman spectroscopy of blood and blood components[J]. Applied Spectroscopy, 2017, 71(5): 767-793.

    [56] [56] EDELMAN G, VAN LEEUWEN T G, AALDERS M C G. Hyperspectral imaging for the age estimation of blood stains at the crime scene[J]. Forensic Science International, 2012, 223(1/2/3): 72-77.

    [57] [57] KUULA J, PUUPPONEN H H, RINTA H, et al. The challenges of analysing blood stains with hyperspectral imaging[C]//SPIE Proceedings", "Sensing Technologies for Global Health, Military Medicine, and Environmental Monitoring IV. Baltimore, Maryland, USA: SPIE, 2014: 393-401.

    [58] [58] LI B, BEVERIDGE P, O′HARE W T, et al. The application of visible wavelength reflectance hyperspectral imaging for the detection and identification of blood stains[J]. Science & Justice, 2014, 54(6): 432-438.

    [60] [60] MIKI T, KAI A, IKEYA M. Electron spin resonance of bloodstains and its application to the estimation of time after bleeding[J]. Forensic Science International, 1987, 35(2/3): 149-158.

    [61] [61] FUJITA Y, TSUCHIYA K, ABE S, et al. Estimation of the age of human bloodstains by electron paramagnetic resonance spectroscopy: Long-term controlled experiment on the effects of environmental factors[J]. Forensic Science International, 2005, 152(1): 39-43.

    [62] [62] SAKURAI H, TSUCHIYA K, FUJITA Y, et al. Dating of human blood by electron spin resonance spectroscopy[J]. Naturwissenschaften, 1989, 76(1): 24-25.

    [63] [63] WITTENBERG J B, WITTENBERG B A, PEISACH J, et al. On the state of the iron and the nature of the ligand in oxyhemoglobin[J]. Proceedings of the National Academy of Sciences of the United States of America, 1970, 67(4): 1846-1853.

    [64] [64] PEISACH J, BLUMBERG W E, WITTENBERG B A, et al. Hemoglobin A: An electron paramagnetic resonance study of the effects of interchain contacts on the heme symmetry of high-spin and low-spin derivatives of ferric alpha chains[J]. Proceedings of the National Academy of Sciences of the United States of America, 1969, 63(3): 934-939.

    [65] [65] DULISKA I, TARGOSZ M, STROJNY W, et al. Stiffness of normal and pathological erythrocytes studied by means of atomic force microscopy[J]. Journal of Biochemical and Biophysical Methods, 2006, 66(1/2/3): 1-11.

    [66] [66] STRASSER S, ZINK A, KADA G, et al. Age determination of blood spots in forensic medicine by force spectroscopy[J]. Forensic Science International, 2007, 170(1): 8-14.

    Tools

    Get Citation

    Copy Citation Text

    Qin Ge, Zhang Zhen, Wu Shihao, Liu Jiatong, Jia Zhenjun. Application of Advanced Spectral Analysis Technology in the Field of Blood Stain Aging[J]. APPLIED LASER, 2024, 44(12): 165

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Mar. 16, 2023

    Accepted: Mar. 11, 2025

    Published Online: Mar. 11, 2025

    The Author Email: Zhenjun Jia (zhenjunjia@163.com)

    DOI:10.14128/j.cnki.al.20244412.165

    Topics